首页|一种改进U2-Net的高分辨率遥感影像道路提取方法

一种改进U2-Net的高分辨率遥感影像道路提取方法

扫码查看
目前基于深度学习的道路提取方法普遍存在忽略影像细节特征的问题.针对此问题,设计了一种改进U2-Net的高分辨率遥感影像道路信息提取新方法.该方法以U2-Net为主体框架,引入了卷积注意力机制模块和自注意力机制模块,既增加影像的全局语义信息又保留了空间细节特征,实现不同类型特征的有效融合.在DeepGlobe和CHN6-CUG两个道路数据集上的实验结果表明,该方法具有更强的特征提取和抗干扰能力,整体性能优于其他同类研究成果,能够更有效地从高分辨率遥感影像中提取道路.
An Improved U2-Net Method for Road Extraction in High-resolution Remote Sensing Images
Currently,there is a common problem in deep learning-based road extraction methods,which is the tendency to ignore the detailed features of images.To address this issue,this paper proposes a novel approach for extracting road information from high-resolution remote sensing images by enhancing the U2-N et algorithm.This method incorporates the modules of convolutional attention mechanism and self-attention mechanism into the original U2-Net model,which not only increases the global semantic information of images but also preserves sufficient spatial features,achieving effective fusion of different types of features.Experimental results on two road datasets,which are DeepGlobe and CHN6-CUG,demonstrate that the proposed method has stronger feature extraction and anti-interference capabilities,and overall performance is better than other similar research achievements,enabling more effective extraction of roads from high-resolution remote sensing images.

deep learningroad extractionsemantic segmentationU2-Netdual attention mechanism

许锐、庄振兴、黄风华

展开 >

福建理工大学计算机科学与数学学院,福州 350118

福建省空间信息感知与智能处理重点实验室(阳光学院),福州 350015

深度学习 道路提取 语义分割 U2-Net 双注意力机制

福建省空间信息感知与智能处理重点实验室开放基金(阳光学院)

FKLSIPIP1020

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(4)