首页|训练样本标签误差对高光谱影像分类影响

训练样本标签误差对高光谱影像分类影响

扫码查看
在影像尤其是高光谱影像分类中,用于学习训练的标签质量对分类成效影响并未得到充分重视.为此,文章基于PyTorch框架,利用Indian Pines高光谱数据集,探讨了在RF、BP、CNN和SSConvNeXt模型下,光谱特征相似度较高的地物在不同比例人为误标注情况时对分类结果的影响.分析结果认为:同样错误标注情况下,SSConvNeXt和CNN相较RF、BP模型体现出20%以上的分类精度优势;在无人为错误标注、10个错误噪声标签、错误标签占比15%和25%时,SSConvNeXt和CNN模型的分类精度都在96%以上,体现了模型的容错性和稳定性;在相对传统的RF和BP模型中,错误标签对分类影响较大且离散.最后重点分析了 SSConvNeXt模型在分类方面的机制优势.该研究可从训练样本角度为遥感影像分类精度问题给予一定的方法选择和定量分析依据.
Impact of Training Sample Label Error on Hyperspectral Remote Sensing Image Classification
In the classification of images,especially hyperspectral images,insufficient attention has been paid to the impact of label quality for learning and training on classification performance.Therefore,based on the PyTorch framework and using the Indian Pines hyperspectral dataset,this article explores the impact of features with high spectral similarity on classification results under RF,BP,CNN,and SSConvNeXt models under different proportions of human error labeling.The results show that under the same mislabeling situation,SSConvNeXt and CNN exhibit a classification accuracy advantage of over 20%compared to RF and BP models,and the classification accuracy of SSConvNeXt and CNN models is above 96%when there are no human error labels,10 error noise labels,and 15%and 25%error labels,reflecting the model's fault tolerance and stability.However,in traditional RF and BP models,error labels have a significant and discrete impact on classification.Finally,the mechanism advantages of SSConvNeXt model in classification are mainly analyzed.This study can provide a certain method selection and quantitative analysis basis for the accuracy of remote sensing classification from the perspective of training samples.

hyperspectral remote sensingsample label qualitydeep l earningclassification accuracyclassification mechanism

余腾、朱益民、王月华、向健斌、张丹丹

展开 >

宿迁学院建筑工程学院,江苏宿迁 223800

中国地质大学(北京)土地科学技术学院,北京 100191

高光谱遥感 样本标签质量 深度学习 分类精度 分类机制

国家自然科学基金江苏省高校自然科学研究面上项目

4187405120KJB170009

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(4)