首页|级联语义分割和边缘检测的GF-2影像耕地提取

级联语义分割和边缘检测的GF-2影像耕地提取

扫码查看
针对山地丘陵区的坡耕地和小面积耕地碎片边界模糊不清、分类提取困难的问题,以GF-2影像为数据源,提出了一种级联语义分割和边缘检测模型的遥感影像耕地信息提取方法.首先,针对不同类型耕地的特点选择级联方式;其次,将耕地边缘作为独立的特征类别,结合改进U-Net、Deeplab V3+和DexiNed模型,融合面特征和线特征,使得耕地边缘特征与语义特征能够进行互补,从而提高耕地提取的准确性,实现对复杂地形背景噪声的抑制和不同类型耕地的提取.实验结果表明,对比单一模型Deeplab V3+和U-Net,级联模型的耕地信息提取的总体精度、Kappa系数和F1值均有大幅度提升,针对不同类型耕地级联模型提取的耕地结果更接近真实耕地标注,漏提、误提区域远低于单一模型.
Extraction of Cultivated Land from GF-2 Images Based on Level Wise Semantic Segmentation and Edge Detection
A remote sensing image farmland information extraction method based on hierarchical semantic segmentation and edge detection models is proposed,using GF-2 images as the data source,to address the problem of unclear boundaries and difficult classification extraction of sloping farmland and small area farmland fragments in mountainous and hilly areas.Firstly,select a cascading approach based on the characteristics of different types of cultivated land.Secondly,the edge of cultivated land is treated as an independent category,and combined with improved U-Net,DeeplabV3+,and DexiNed models to integrate surface and line features,so that the edge features of cultivated land can complement semantic features,thereby improving the accuracy of cultivated land extraction,suppressing complex terrain background noise,and extracting different types of cultivated land.The experimental results show that the overall accuracy,Kappa coefficient,and F1 score of the cascaded model for extracting farmland information have been improved to different degrees compared with the single model DeeplabV3+and U-Net.The cultivated land results extracted from the cascade model for different types of cultivated land are closer to the real cultivated land label,and the areas of missing and false extraction are far lower than that of the single model.

cultivated land informationsemantic segmentationedge detectionGF-2 imagehilly and mountainous area

尚华胜、甘淑、袁希平、朱智富、李绕波

展开 >

昆明理工大学,昆明 650093

云南省高校高原山区空间信息测绘技术应用工程研究中心,昆明 650093

滇西应用科技大学,云南大理 671006

云南省高校山地实景点云数据处理及应用重点实验室,云南大理 671006

展开 >

耕地信息 语义分割 边缘检测 GF-2影像 丘陵山区

国家自然科学基金

62266026

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(4)