首页|RH-CUnet:嵌入边缘和角点的传统村落建筑物提取

RH-CUnet:嵌入边缘和角点的传统村落建筑物提取

扫码查看
传统村落建筑物作为珍贵的文化资源,快速、准确地获取传统村落建筑物信息,对保护传统文化有着重要意义.在利用遥感图像识别农村建筑物,尤其是传统村落建筑物时,存在漏检、错检、轮廓失真、角点不规则等问题.针对此问题,文章提出了 RH-CUnet模型.该模型以U-Net网络为基础,通过嵌入边缘识别网络和角点检测算法来提高模型对建筑物的边缘、角点的关注度,从而实现传统村落建筑物的精确提取.实验结果表明,在自制的传统村落建筑物数据集和WHU建筑物数据集上,该方法提取的建筑物更加完整,轮廓形状平滑,边角清晰,且在precision、recall、F1-score、IoU、BoundF和VNE 6种评价指标上都得到了很大的提升.RH-CUnet模型有效地提高了传统村落建筑物的提取精度,具有一定的实用价值.
RH-CUnet:Extracting Traditional Village Buildings by Embedding Edges and Corners
As a precious cultural resource,obtaining information on traditional village buildings quickly and accurately is of great significance for protecting traditional culture.When using remote sensing images for recognizing rural buildings,especially traditional village buildings,it faces problems such as missed detections,false detections,distorted contours,and irregular corners.In response to this issue,this article proposes the RH-CUnet model,which is based on the U-Net network and embeds edge recognition networks and corner detection algorithms to improve the model's attention to the edges and corners of buildings,thereby achieving accurate extraction of traditional village buildings.The experimental results show that on Traditional Village Building Dataset and WHU Building Dataset,the outline shape of the traditional village buildings extracted by RH-CUnet is smooth and complete,the corners are sharp and clear,and the six evaluation indicators of precision,recall,F1-score IoU,BoundF,and VNE all achieve good results.The RH-CUnet model effectively improves the accuracy of traditional village building land extraction and has certain practical value.

U-Nettraditional village buildingedge recognition networkcorner detectionbuilding extraction

朱梓萌、李少丹、郑东博、薛彭帅

展开 >

河北师范大学地理科学学院,石家庄 050024

河北省环境变化遥感识别技术创新中心,石家庄 050024

U-Net 传统村落建筑物 边缘识别网络 角点检测 建筑物提取

国家自然科学基金河北省自然科学基金河北省教育厅基金河北师范大学校级研究生创新资助项目

41801240D2019205067BJK2022031XCXZZSS202302

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(4)