首页|基于改进YOLOv5-ResNet的海上舰船SAR图像快速检测

基于改进YOLOv5-ResNet的海上舰船SAR图像快速检测

扫码查看
在恶劣天气和海浪等自然因素的影响下,基于可见光数据进行舰船目标监测等手段往往难以有效开展,需要借助主动式微波成像卫星合成孔径雷达(SAR)进行图像解译.为了解决深度学习在处理数据集较小图像上无法准确提取特征及数据相似度较高的问题,基于YOLOv5-ResNet提出了一种跨尺度融合机制,重新定义损失函数.研究表明,识别SAR舰船目标的准确率有一定的提升:识别单目标舰船检测最高准确度达到93%,同比YOLOv5 提升4%,比YOLOv5-ResNet50 提升20%;在近岸舰船目标检测上,有效降低了由于数据集质量不佳、模型训练方法不当等造成误差率的非必要上升.
Rapid Detection of SAR Images of Naval Vessels Based on Improved YOLOv5-ResNet
Under the influence of natural factors such as bad weather and waves,it is often difficult to effectively carry out ship target monitoring based on visible light data and other means,which requires the use of active microwave imaging satellite synthetic-aperture radar(SAR)for image interpretation.To address the issue of inaccurate feature extraction by deep learning when dealing with small datasets and images,as well as the problem of high data similarity,a cross-scale fusion mechanism based on YOLOv5-ResNet is proposed to redefine the loss function.The research shows that there is a certain improvement in the accuracy of identifying SAR ship targets:the maximum accuracy of identifying single ships is 93%,which is 4%higher than YOLOv5 and 20%higher than YOLOv5-ResNet50.In near-shore ship target detection,it effectively reduces the unnecessary increase in error rate caused by poor data set quality and inappropriate model training methods.

SAR imagesSpace-borne SAR imagesShip target detectionYOLOv5ResNetCross scale fusion

龙昊、张思佳、周晶、王冠

展开 >

海军大连舰艇学院 作战软件与仿真研究所,大连 116018

大连海洋大学 信息工程学院,大连 116018

空军通信士官学校,大连 116600

合成孔径雷达图像 星载SAR图像 舰船目标检测 YOLOv5 ResNet 跨尺度融合

2024

宇航计测技术
中国航天科技集团一院102所 二院203所

宇航计测技术

CSTPCD
影响因子:0.189
ISSN:1000-7202
年,卷(期):2024.44(2)
  • 20