首页|分布式星群中的协同计算卸载与资源分配

分布式星群中的协同计算卸载与资源分配

扫码查看
在分布式星群在轨建造、维修的全天基场景中,星群动态性大,时延敏感类(A类)与时延容忍类(B类)任务由资源受限的终端卫星并发产生,而传统的天地协同卸载场景中不考虑卫星动态性和任务类型的多样性.针对全天基场景的需求,构建了一种分布式星群边缘计算架构,提出了一种差分自适应奖励系统DDPG(DARS-DDPG)算法.通过将差分自适应奖励系统引入传统DDPG算法,使算法在学习过程中能够区分出不同类型任务的重要性,并自适应调整两类任务的惩罚系数,使两类任务的完成率达到最高.仿真表明,DARS-DDPG学习出的策略相较于基线策略以及传统DDPG学习出的策略,在任务时延以及A、B类任务完成率上都有大幅提升.
Cooperative Computing Offloading and Resource Allocation in Distributed Satellite Clusters
In the all-space-based scenario of on-orbit construction and maintenance of distributed clusters,the clusters are highly dynamic,and the tasks of delay-sensitive(class A)and delay-tolerant(class B)are generated concurrently by resource-constrained terminal satellites,while the traditional space-ground cooperative offloading scenario does not consider the satellite dynamics and the diversity of task types.Aiming at the needs of all-space-based scenarios,a distributed star clusters edge computing architecture is constructed,and a differential adaptive reward system-deep deterministic policy gradient(DARS-DDPG)algorithm is proposed.By introducing the differential adaptive reward system into the traditional DDPG algorithm,the algorithm can distinguish the importance of different types of tasks in the learning process and adaptively adjust the penalty coefficients of the two types of tasks.The completion rate of the two types of tasks is the highest.Simulation results show that compared with the baseline strategy and the strategy learned by the traditional DDPG,the strategy learned by DARS-DDPG has a significant improvement in task delay and the completion rate of A and B tasks.

Computing offloadingResource allocationSatellite clustersDeep reinforcement learning

刘津宇、姜兴龙、胡海鹰、梁广

展开 >

中国科学院微小卫星创新研究院,上海 201203

中国科学院大学,北京 100049

上海微小卫星工程中心,上海 201203

计算卸载 资源分配 卫星集群 深度强化学习

国家自然科学基金

U21A20443

2024

宇航学报
中国宇航学会

宇航学报

CSTPCD北大核心
影响因子:0.887
ISSN:1000-1328
年,卷(期):2024.45(6)
  • 6