首页|考虑输入饱和的空间飞行器姿态神经鲁棒自适应滑模控制

考虑输入饱和的空间飞行器姿态神经鲁棒自适应滑模控制

扫码查看
针对空间飞行器姿态跟踪控制过程中出现的执行器饱和、模型不确定性和未知外部扰动问题,提出了一种鲁棒自适应径向基函数神经网络(RBFNN)增强滑模控制方法.首先,基于四元数法建立空间飞行器姿态运动学和动力学模型,并针对未知外部扰动建立非线性扰动观测器.其次,为了解决执行器饱和问题,引入高斯误差函数对控制器幅值进行约束,并以PID滑模控制为框架,对控制器进行设计.在控制器设计过程中,利用新型切换函数将鲁棒自适应控制和RBFNN进行结合,对模型不确定性进行逼近,并利用梯度下降法解决RBFNN权值优化问题.随后,基于Lyapunov理论证明闭环系统的有界性,并分析了闭环系统的收敛域.最后,通过仿真分析验证了所设计控制器的有效性和鲁棒性.
Neural Robust Adaptive Sliding Mode Method for Spacecraft Attitude Control with Input Saturation
For the problems of actuator saturation,uncertain inertial parameters and unknown external disturbances in the process of spacecraft attitude tracking control,a robust adaptive radial basis function neural network(RBFNN)enhanced sliding mode control method is proposed.Firstly,a quaternion-based model of the spacecraft's attitude kinematics and dynamics is established,and a disturbance observer is established for unknown external disturbances.Secondly,to solve the actuator saturation problem,a Gaussian error function is introduced to constrain the controller amplitude,and a PID sliding mode control framework is used to design the controller.In the controller design process,a novel switching function is used to combine robust adaptive control and RBFNN to approximate uncertain inertial parameters.The gradient descent method is employed to solve the weight optimization problem of RBFNN.Subsequently,the boundedness of the closed-loop system is proved based on Lyapunov theory,and the convergence domain of the closed-loop system is analyzed.Finally,simulation analysis is conducted to verify the effectiveness and robustness of the designed controller.

SpacecraftActuator saturationUncertain inertial parameterDisturbance observerRBFNN

李成洋、王伟、耿宝魁、胡宽容、王雨辰

展开 >

北京理工大学宇航学院,北京 100081

无人机自主控制技术北京市重点实验室,北京 100081

西北工业集团有限公司,西安 710043

空间飞行器 执行器饱和 模型不确定 扰动观测器 RBFNN

国家自然科学基金国家自然科学基金

5227235862103052

2024

宇航学报
中国宇航学会

宇航学报

CSTPCD北大核心
影响因子:0.887
ISSN:1000-1328
年,卷(期):2024.45(8)