首页|基于机器学习的卫星轨道预测混合模型研究

基于机器学习的卫星轨道预测混合模型研究

扫码查看
卫星的轨道预报对于卫星轨道设计、精密定轨、自主定轨和航天任务执行有着重要的作用.针对基于动力学建模的卫星轨道预报方法中存在缺少空间环境信息和预报精度较低的问题,提出了一种基于注意力机制的CNN-BiLSTM和XGBoost混合模型轨迹预测方法.该方法以动力学模型预测为基础,通过学习和修正历史轨道预报的误差,提高中短期轨道预报的精度.选用Saral卫星7天、14天和70天的轨道数据以及TerraSAR-X卫星7天的轨道数据与SGP4轨道预报模型设计实验,并和LSTM、BiLSTM和GRU进行对比,验证了提出的预测模型的有效性.
Research on Hybrid Model of Satellite Orbit Prediction Based on Machine Learning
The orbital prediction of satellites plays a crucial role in satellite orbit design,precise orbit determination,autonomous orbit determination,and the implementation of space missions.Aiming at the issues of lacking spatial environment information and having low prediction accuracy in the satellite orbit prediction method based on dynamic modeling,a trajectory prediction approach using a hybrid model of CNN-BiLSTM and XGBoost based on the attention mechanism was proposed.This method is based on the prediction of the dynamic model and enhances the accuracy of short-term and medium-term orbit prediction by learning and correcting the errors of historical orbit predictions.The orbital data of the Saral satellite for 7 days,14 days,and 70 days,as well as the 7-day orbital data of the TerraSAR-X satellite,were employed along with the SGP4 orbit prediction model to design experiments.Comparisons were made between the proposed prediction model and LSTM,BiLSTM,and GRU to verify its validity.

Orbit predicationNeural networkMachine learningHybrid modelDynamic model

李欣怡、陈昭岳、徐明、郝雅波、白雪、刘继忠

展开 >

北京航空航天大学宇航学院,北京 102206

探月与航天工程中心,北京 100190

轨道预报 神经网络 机器学习 混合模型 动力学模型

2024

宇航学报
中国宇航学会

宇航学报

CSTPCD北大核心
影响因子:0.887
ISSN:1000-1328
年,卷(期):2024.45(11)