首页|基于深度学习的阴影智能去除方法研究

基于深度学习的阴影智能去除方法研究

扫码查看
基于图像的材质重建技术是获取贴图资产的方式之一,为构建逼真材质外观,针对材质图像去除原始阴影十分必要.现有去除阴影方法普遍存在数据集单一、处理阴影类型少等问题.本文依据材质纹理阴影处理的难点和现状,筛选重制出具备表面和场景多样性的高分辨率图像数据集,使用深度卷积神经网络进行训练与分析,尝试为材质纹理阴影去除提供一定经验.实验结果表明,本文方法能够有效去除复杂场景阴影,一定程度上扩展了去除阴影的范围,并保留了相关纹理信息.
Research on image shadow removal based on deep learning
Image-based material reconstruction technique is one of the methods for obtaining texture assets.To create real-istic material appearances,it is essential to remove the original shadows from texture images.Existing shadow removal methods often face challenges such as limited diversity in datasets and limited range of shadow types that are capable of handling.To address the complexities and current limitations in material texture shadow processing,this research curated a high-resolution image dataset with diverse surface and scene characteristics.Utilising deep convolutional neural net-works,the study conducted training and analysis,aiming to provide insights into material texture shadow processing.Ex-perimental results demonstrated the effectiveness of the proposed method in shadow removal for complex scenes,expand-ing the scope of shadow removal while preserving relevant texture information.

VFX ProductionDeep LearningShadow RemovalMaterial Texture

马晓晴、常乐

展开 >

北京电影学院中国电影高新技术研究院,北京 100088

视效制作 深度学习 阴影去除 材质纹理

2024

现代电影技术
广电总局电影技术质量检测所

现代电影技术

CSTPCD
影响因子:0.149
ISSN:1673-3215
年,卷(期):2024.(1)
  • 2