首页|基于多粒度注意力Transformer的电影音乐生成研究

基于多粒度注意力Transformer的电影音乐生成研究

扫码查看
电影音乐自动生成是当前人工智能领域的研究热点之一,不少深度学习音乐生成算法可实现动听的电影配乐生成,但这些算法在生成过程中往往忽略了流派等风格控制.针对这一情况,本文提出了一种基于多粒度注意力Transformer的电影音乐生成方法,可根据目标流派从零生成音乐.本方法在引入多粒度注意力Transformer建模音乐结构的基础上,引入了对抗学习机制,通过具有流派分类损失和生成对抗损失的流派辅助分类判别器,加强模型对流派信息的控制.在所构建的包含流派信息的符号音乐数据集上进行的主客观实验表明,本文方法在生成音乐质量和流派控制方面均优于以往方法,有助于基于目标流派自动生成电影配乐.
Research on music generation for film based on transformer with multi-grained attention
Music generation for film is one of the current research hotspots in the field of artificial intelligence.Various deep learning algorithms for music generation have been able to create pleasing film scores.However,style contral foward genre or other parameters during generation process has been somehow neglected.In this paper,an innovative music gen-eration method is proposed,which can generates music from scratch according to the target genre.Our model,a Trans-former with multi-grained attention is introduced to model music structure,and a genre auxiliary classifier discriminator with genre classification loss and generative adversarial loss is introduced to enhance the control over genre information.The subjective and objective experimental results on the symbolic music dataset with genre information constructed in this pa-per show that the proposed method outperforms previous methods in terms of generated music quality and genre control,indicating that it is useful for automatic generation of genre-conditioned film scores.

Music GenerationGenre-conditionedGenerative Adversarial NetworkTransformerFilm Scores

熊晓钰、谢志峰、黄登云、朱永华

展开 >

上海大学上海电影学院,上海 200072

上海电影特效工程技术研究中心,上海 200072

音乐生成 流派控制 生成式对抗网络 Transformer 电影音乐

2024

现代电影技术
广电总局电影技术质量检测所

现代电影技术

CSTPCD
影响因子:0.149
ISSN:1673-3215
年,卷(期):2024.(9)
  • 1