首页|基于机器视觉的骨料堆积体级配概率识别方法研究

基于机器视觉的骨料堆积体级配概率识别方法研究

扫码查看
传统取样筛分方法难以对堆场骨料级配进行快速准确测量,因此,文章建立双目立体视觉采集系统,将真实三维空间上的点投影到相机的二维平面上,进行立体匹配,得到视差图,结合双目立体视觉距离测量,得到堆积体三维模型.然后对锥形堆积体俯视拍摄采集图像,利用深度学习方法进行骨料图像分割,统计图像中颗粒骨料的面积占比,对同一条带不同高度范围内的粗颗粒浓度进行多元线性拟合,得到多元线性回归模型.对比人工筛分手动测量结果,表明文章方法具有可行性和应用前景.
Research on Probability Identification Method of Aggregate Accumulation Gradation Based on Machine Vision
The traditional sampling and sieving method is difficult to measure the aggregate gradation in the storage yard quickly and accurately.Therefore,this paper establishes a binocular stereo vision acquisition system,which projects points in the real three-dimensional space onto the two-dimensional plane of the camera and performs stereo matching to obtain a disparity map.Combined with binocular stereo vision distance measurement,the three-dimensional model of the accumulation body is obtained.Then,the conical accumulation body is photographed from the above to capture images,and the aggregate image segmentation is carried out by using the deep learning method.The proportion of the area of the particle aggregate in the image is counted,and the multivariate linear regression model is obtained by multivariate linear fitting of the coarse particle concentration in different height ranges of the same belt.Compared with the results of manual sieving measurement,it shows that the method in this paper has feasibility and application prospect.

binocular visionaggregate accumulationmanufactured sandintelligent prediction

王超伦、杨达赖、李晓光、王建刚、肖馨怡

展开 >

中交一公局集团华中工程有限公司,湖北 武汉 430014

湖南科技大学 土木工程学院,湖南 湘潭 411201

双目视觉 骨料堆积 机制砂石 智能预测

2024

工程技术研究
广州钢铁企业集团有限公司

工程技术研究

影响因子:0.081
ISSN:2096-2789
年,卷(期):2024.9(11)
  • 4