首页|影像组学联合临床特征对非小细胞肺癌EGFR突变的预测价值

影像组学联合临床特征对非小细胞肺癌EGFR突变的预测价值

扫码查看
目的 探讨基于胸部CT影像组学联合临床特征的列线图在非小细胞肺癌(NSCLC)表皮生长因子受体(EG-FR)基因突变中的预测价值.方法 回顾性分析210例经病理证实为NSCLC患者的术前临床资料及非增强薄层CT图像,将所有NSCLC患者分为EGFR突变组140例及EGFR野生组70例,按8∶2的比例将其随机分配到训练组和验证组,提取CT平扫图像上的肿瘤影像组学特征,应用最小绝对收缩和选择算子(LASSO)回归分析来筛选特征,同时建立影像组学预测模型,并纳入临床特征(CT影像学特征及患者临床资料)、影像组学标签构建综合预测模型,并基于综合预测模型绘制列线图,实现模型可视化,并进行模型验证.绘制受试者工作特征(ROC)曲线、校准曲线和决策曲线(DCA)用于评估模型预测性能和临床效用.结果 利用影像组学标签预测EGFR突变状态的训练组AUC=0.756,验证组AUC=0.696,临床特征模型中训练组AUC=0.811,验证组AUC=0.651,将影像组学标签联合临床特征构建综合预测模型后可提高对EGFR突变状态的预测效能,其训练集AUC=0.847,验证集AUC=0.740.结论 与单独的临床特征或影像组学标签相比,联合影像组学标签和临床特征构建的综合模型对预测NSCLC EGFR基因突变方面具有更好的预测效能,有助于指导临床治疗策略.
Predictive value of imaging combined with clinical features for EGFR mutation in non-small cell lung cancer
Objective To investigate the predictive value of chest CT imaging combined with clinical fea-tures in epidermal growth factor receptor(EGFR)gene mutation in non-small cell lung cancer(NSCLC).Methods Preoperative clinical data and unenhanced thin-slice CT images of 210 patients with pathologically proven NSCLC were retrospectively analyzed.All NSCLC patients were divided into EGFR mutant group(140 cases)and EGFR wild group(70 cases),randomly assigned to training group and validation group(in a 8∶2 ratio),and tumor imaging features on CT plain scan images were extracted.Minimum absolute contraction and selection operator(LASSO)regression analysis was used to screen features,and an imaging omics prediction model was established.Clinical features(CT imaging features and patient clinical data)and imaging omics la-bels were included to construct a comprehensive prediction model.Based on the comprehensive prediction mod-el,a nomogram was drawn to realize model visualization and model validation.Receiver operating characteristic(ROC)curves,calibration curves,and decision curves(DCA)were plotted to evaluate the model's predictive performance and clinical utility.Results The AUC of the training group was 0.756;that of the verification group was 0.696;that of the clinical feature model was 0.811;and that of the verification group was 0.651.The integrated prediction model combined with the imaging label could improve the prediction efficiency of EG-FR mutation status,with the training set AUC=0.847 and the verification set AUC=0.740.Conclusion Compared with clinical features or imaging tags alone,the integrated model constructed by combining imaging tags and clinical features has better predictive efficacy in predicting NSCLC EGFR gene mutation,which is helpful to guide clinical treatment strategy.

imagomicsnon-small cell lung cancerepidermal growth factor receptorgene mutation

黄必贵、农欣欣、邹清艺、周婷、吴英宁

展开 >

右江民族医学院研究生学院,广西 百色 533000

右江民族医学院附属医院,广西 百色 533000

影像组学 癌,非小细胞肺 表皮生长因子受体 基因突变

广西壮族自治区研究生教育创新计划

YCSW2023503

2024

右江民族医学院学报
右江民族医学院

右江民族医学院学报

影响因子:0.708
ISSN:1001-5817
年,卷(期):2024.46(2)
  • 17