首页|基于XGBoost模型和SHAP值的慢性冠脉综合征风险预测及可解释性分析

基于XGBoost模型和SHAP值的慢性冠脉综合征风险预测及可解释性分析

扫码查看
目的 构建基于XGBoost和SHAP值的可解释性模型,该模型可同时实现良好的预测能力和解释能力,可用于慢性冠脉综合征(CCS)患者的可解释预测.方法 本研究选取2019年9月至2023年6月就诊于福建中医药大学附属第三人民医院、福建中医药大学附属南平人民医院、上海中医药大学附属龙华医院CCS患者数据,数据包括患者的临床基线资料、心血管危险因素以及既往行经皮冠状动脉介入治疗(PCI)和/或冠状动脉旁路移植术(CABG)手术情况及冠脉造影结果.在本研究中,通过将XGBoost模型与其他4种机器学习模型进行比较,评估XGBoost模型的预测性能.此外,使用基于SHAP值的可视化解释器用于提供个性化评估和解释,以实现个性化的临床决策支持.结果 XGBoost模型能较好地预测CCS人群的重大不良心血管事件(MACE)发生,与以往的预测模型相比,此模型更为简单有效,预测精度高,模型召回率(RR)和受试者工作特征曲线下面积(AUC)分别为84.85%和98.01%,均高于其他4种模型结果.此外,该文对两组指标进行了特征依赖分析,发现高血压、低密度脂蛋白胆固醇(LDL-C)、吸烟指数、中医证型和年龄可显著影响MACE发生风险.结论 基于XGBoost和SHAP值的可解释性模型可能有助于临床医生更准确快速地识别CCS人群中存在MACE风险的患者,为患者提供更好的治疗.此外,可视化的可解释性框架的使用增加了模型透明度,便于临床医生分析预测模型的可靠性.
Risk prediction and interpretability analysis of chronic coronary syndromes based on XGBoost model and SHAP values
Objective To construct an interpretable model based on XGBoost and SHAP values,which can simultaneously achieve good predictive ability and explanatory ability,for interpretable prediction in pa-tients with chronic coronary syndrome(CCS).Methods This study selected data from CCS patients who vis-ited the Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine,Nanping Peo-ple's Hospital Affiliated to Fujian University of Traditional Chinese Medicine,and Longhua Hospital Shanghai University of Traditional Chinese Medicine between September 2019 and June 2023.The data included pa-tients'clinical baseline information,cardiovascular risk factors,history of percutaneous coronary intervention(PCI)and/or coronary artery bypass grafting(CABG),and coronary angiography results.In this study,the predictive performance of the XGBoost model was evaluated by comparing it with four other machine learning models.In addition,a visual interpreter based on SHAP values was used to provide personalized assessment and interpretation for personalized clinical decision support.Results The XGBoost model demonstrated good predictive ability for major adverse cardiovascular events(MACE)in the CCS population and this model was simpler and more effective than previous prediction models,with high predictive accuracy,and the model recall rate(RR)and the area under the receiver operating characteristic curve(AUC)were 84.85%and 98.01%,re-spectively,both higher than those of the other four models.In addition,this study conducted a feature-depend-ent analysis of the two groups of indicators and found that hypertension,LDL-C,smoking index,traditional Chinese medicine syndrome types and age could significantly affect the risk of MACE.Conclusion The inter-pretable model based on XGBoost and SHAP values may help clinicians more accurately and rapidly identify CCS patients at risk of MACE and provide better treatment for patients.In addition,the use of a visual inter-pretable framework increases model transparency and facilitates clinicians to analyze the reliability of predictive model.

chronic coronary syndromeXGBoostSHAPpredictive modelfeature visualization

黄希、张硕、江红梅、罗斌、林佳、毛美娇、连大卫、吴黎明

展开 >

福建中医药大学附属第三人民医院,福建 福州 350108

福建中医药大学附属南平人民医院,福建 南平 353000

上海中医药大学附属龙华医院,上海 200032

福建中医药大学中西医结合学院 中西医结合研究院,福建 福州 353122

福建医科大学附属协和医院,福建 福州 350001

展开 >

慢性冠脉综合征 XGBoost SHAP 预测模型 特征可视化

2024

右江民族医学院学报
右江民族医学院

右江民族医学院学报

影响因子:0.708
ISSN:1001-5817
年,卷(期):2024.46(6)