首页|增强CT列线图预测模型在鉴别≤5cm胃间质瘤与胃神经鞘瘤中的应用

增强CT列线图预测模型在鉴别≤5cm胃间质瘤与胃神经鞘瘤中的应用

扫码查看
目的 评估增强CT列线图预测模型在鉴别诊断直径≤ 5 cm的胃间质瘤(GST)与胃神经鞘瘤(GS)中的应用价值.方法 本研究回顾性分析了 2018年1月至2023年6月间,在弋矶山医院由手术病理及免疫组化证实的84例GST患者和23例GS患者的临床资料及增强CT图像特征,共计纳入23个相关变量.通过单因素分析筛选出影响显著的变量(P<0.05),并将这些变量用于构建多因素预测模型,并绘制相应的列线图.模型的诊断效能通过受试者操作特征(ROC)曲线及其曲线下面积(AUC)进行评估,并通过DeLong检验比较不同变量和列线图的诊断效能.模型的准确性通过校正曲线进行内部验证,并通过2折交叉验证进一步验证.结果 单因素分析确定8个显著变量:肿瘤形态、生长部位、生长方式、静脉期不均匀率(SHRTv)、静脉期强化率(ERTv)、延迟期强化率(ERTd)、静脉期增强程度(DEv)和延迟期增强程度(DEd),其中肿瘤形态、生长部位和DEd为鉴别诊断的独立影响因素.列线图区分GST与GS的AUC为0.894(95%CI:0.818~0.969),灵敏度为79.8%,特异度为91.3%.校正曲线表明模型预测与实际观测结果具有良好一致性.结论 基于增强CT特征的列线图预测模型在鉴别直径≤ 5 cm的GST与GS中显示出高效能,通过内部验证和交叉验证证实了其可靠性.
Application of an enhanced CT nomogram prediction model in differentiating gastric stromal tumor ≤5 cm in diameter from gastric schwannoma
Objective To evaluate the application value of an enhanced computed tomography(CT)no-mogram prediction model in differentiating gastric stromal tumor(GST)≤5 cm in diameter from gastric schwannoma(GS).Methods This retrospective study analyzed the clinical data and enhanced CT image characteristics of 84 patients with GST and 23 patients with GS confirmed by surgical pathology and immuno-histochemistry at Yijishan Hospital between January 2018 and June 2023.A total of 23 relevant variables were included.Significant variables(P<0.05)were screened through univariate analysis and used to construct a multivariate prediction model,with a corresponding nomogram being drawn.The diagnostic performance of the model was evaluated using the receiver operating characteristic(ROC)curve and its area under the curve(AUC),and the diagnostic efficacies of different variables and the nomogram were compared using the DeLong test.The accuracy of the model was internally validated using the calibration curve and further validated through 2-fold cross-validation.Results Univariate analysis identified eight significant variables:tumor mor-phology,site of growth,mode of growth,heterogeneity in the venous phase(SHRTv),enhancement rate in the venous phase(ERTv),enhancement rate in the delayed phase(ERTd),enhancement degree in the venous phase(DEv),and enhancement degree in the delayed phase(DEd).Among these,tumor morphology,site of growth,and DEd were independent influencing factors for differential diagnosis.The AUC of the nomogram for differentiating GST from GS was 0.894(95%CI:0.818~0.969),with a sensitivity of 79.8%and a speci-ficity of 91.3%.The calibration curve indicated good consistency between the model predictions and actual ob-servations.Conclusion The nomogram prediction model based on enhanced CT features demonstrates high performance in differentiating GST≤5 cm in diameter from GS,and its reliability has been confirmed through internal and cross-validation.

computed tomographygastric tumorgastric stromal tumorgastric schwannomanomo-gram

何湛、吴树剑、袁权、范莉芳

展开 >

皖南医学院弋矶山医院医学影像中心,安徽 芜湖 241001

皖南医学院医学影像学教研室,安徽 芜湖 241001

计算机断层成像 胃肿瘤 胃间质瘤 胃神经鞘瘤 列线图

2024

右江民族医学院学报
右江民族医学院

右江民族医学院学报

影响因子:0.708
ISSN:1001-5817
年,卷(期):2024.46(6)