首页|基于全影响因素的轧钢加热炉板坯单耗预测

基于全影响因素的轧钢加热炉板坯单耗预测

Prediction of slab unit energy consumption in steel rolling heating furnace based on all influencing factors

扫码查看
板坯实际生产过程中单耗计算受原料和燃料条件、操作工艺、钢种等因素影响,且各因素与板坯单耗之间的映射关系较为复杂.文章采用BP神经网络建立板坯单耗预测模型,以板坯加热炉实际生产数据为研究对象,加热过程中涉及的全部影响因素共17 项作为输入变量,建立板坯单耗计算预测模型.结合试错法确定合理的BP神经网络结构为:输入层节点数为17,隐藏层节点数为10,输出层节点数为1.预测结果显示单耗预测值与实际值趋势一致,预测均方根误差仅为0.181 GJ/t,模型整体精度可达92.06%.
The calculation of unit energy consumption in the actual production process of slabs is in-fluenced by factors such as raw material and fuel conditions,operating processes,and steel grades,and the mapping relationship between each factor and the unit energy consumption of slabs is relatively complex.In the paper,the prediction model of slab unit erergy consumption is established by using BP neural network,and the actual production data of slab heating furnace is taken as the research object,and 17 influencing factors involved in the heating process are used as input variables to establish a slab unit energy consumption calculation and prediction model.Combining trial and error methods,a rea-sonable BP neural network structure is determined as follows:the number of input layer nodes is 17,the number of hidden layer nodes is 10,and the number of output layer nodes is 1.The prediction re-sults show that the predicted unit energy consumption trend is consistent with the actual value,and the predicted root mean square error was only 0.181 GJ/t,The overall accuracy of the model can reach 92.06%.

heating furnaceBP neural networkslabtotal influencing factorunit energy con-sumptionprediction model

杨筱静、段毅、何胜方、包向军、陈光、张璐、陆彪

展开 >

安徽工业大学能源与环境学院

马鞍山钢铁股份有限公司港务原料厂

安徽工业大学建筑工程学院

加热炉 BP神经网络 板坯 全影响因素 单耗 预测模型

国家重点研发计划安徽省高等学校自然科学研究项目

2020YFB1711100KJ2021A0411

2024

冶金能源
中钢集团鞍山热能研究院有限公司

冶金能源

CSTPCD北大核心
影响因子:0.319
ISSN:1001-1617
年,卷(期):2024.43(3)
  • 24