首页|基于集成学习和工艺经验的烧结终点预报模型

基于集成学习和工艺经验的烧结终点预报模型

Prediction model of sintering burn through point based on integrated learning and process experience

扫码查看
提出了融合大数据技术和工艺知识的烧结终点预报系统.首先,采集、清洗、整合了实际烧结生产的海量历史数据,建立了烧结全流程大数据仓库.在此基础上,分析了烧结终点位置与烧结矿质量指标间的关系.然后,采用数据挖掘和工艺知识相结合的方法筛选出与烧结终点位置相关的重要特征变量,选用梯度提升树算法(GBDT算法)建立了烧结终点位置预报模型,并应用网格搜索和交叉验证方法对算法涉及参数进行了优化,而且在预报模型的外层建立了相应的专家规则.预报系统整体预测命中率达到88%以上,与以往的预报模型相比,预报系统的预报精度和泛化能力显著提升,对指导烧结实际生产有重要的作用.
A sintering end-point prediction system integrating data technology and process knowledge was proposed.First of all,the mass historical data of actual sintering production was collected,cleaned and integrated,a big data warehouse for sintering was established.On this basis,the relation-ships between the sintering end point and the sinter quality indexes were analyzed.Then,the important characteristic variables related to the sintering end point were selected by combining data mining with process knowledge.The prediction model of sintering end point was established by using Gradient Boosted Decision Trees(GBDT)algorithm,the parameters involved in the algorithm were optimized by means of grid search and cross validation,and the corresponding expert rules were established in the outer layer of the prediction model.The overall forecast hit rate of the forecasting system is over 88%.Compared with the previous prediction models,the prediction accuracy and generalization ability of the prediction system are improved significantly,which plays an important role in guiding the actual pro-duction of sintering.

sintering burn through point predictionparameter screeningGBDT algorithmexpert rules

赵志伟、冯伟健、邵玉杰、李宇、刘颂、刘小杰

展开 >

华北理工大学人工智能学院

唐山市物联网与移动互联新技术重点实验室

唐山学院人工智能学院

华北理工大学冶金与能源学院

展开 >

烧结终点预报 特征选择 GBDT算法 专家规则

国家自然科学基金青年基金唐山市应用基础研究科技计划

5200409621130233C

2024

冶金能源
中钢集团鞍山热能研究院有限公司

冶金能源

CSTPCD北大核心
影响因子:0.319
ISSN:1001-1617
年,卷(期):2024.43(3)
  • 12