首页|高炉鼓风条件对回旋区形态影响的数值模拟研究

高炉鼓风条件对回旋区形态影响的数值模拟研究

Numerical simulation study on the influence of blast furnace blowing conditions on raceway morphology

扫码查看
针对高炉回旋区难以实验观测,研发了二维欧拉—颗粒多相流动模型,对高炉回旋区形成进行了数值模拟,研究了鼓风速度、鼓风角度对回旋区尺寸和形状的具体影响.研究结果表明,当鼓风速度从150 m/s增至250 m/s时,回旋区气相体积分数及尺寸显著增加,深度和高度分别从0.75 m和1.24m扩展至1.4 m和2.36 m.另外,鼓风角度的调整在回旋区的水平和深度方向同样起到了关键作用,当鼓风角度从0°调整至-30°时,回旋区高度保持在2 m左右,深度从1.52 m降至1.13 m,特别是较小鼓风角度有利于增加回旋区深度.研究结果为高炉鼓风操作参数优化提供了科学依据,对于提升高炉运行效率和生产能力具有重要的指导价值.
Due to the difficulty of experimentally observing the raceway area in blast furnaces,this study developed a two-dimensional Eulerian-Lagrangian multiphase flow model to numerically simu-late the formation of the blast furnace raceway area,focusing on the specific effects of blast air speed and angle on the dimensions and shape of the raceway area.The results reveal that increasing the blast air speed from 150 m/s to 250 m/s significantly enlarges the gas phase volume fraction and dimensions of the raceway area,with its depth and height expanding from 0.75 m and 1.24 m to 1.4 m and 2.36 m,respectively.Furthermore,adjusting the blast air angle plays a crucial role in the horizontal exten-sion and depth of the raceway area,particularly when the blast air angle is adjusted from 0° to-30°,the height of the raceway area remains around 2 m,and its depth decreases from 1.52 m to 1.13 m,highlighting the positive impact of smaller blast air angles on increasing the depth of the raceway area.These findings provide a scientific basis for optimizing blast furnace blowing parameters,offering signif-icant guidance for enhancing the operational efficiency and production capacity of blast furnaces.

blast furnaceblowing conditionsraceway morphologynumerical simulation

刘蕾、李忠峰、赵振龙、张志伟、孙兆楠、卓雨霆

展开 >

营口理工学院

澳大利亚新南威尔士大学

高炉 鼓风条件 回旋区形态 数值模拟

国家重点研发计划资助项目辽宁省教育厅和科技厅科研项目辽宁省教育厅和科技厅科研项目营口市企业博士双创计划项目

2022YFE0196700LJKZ11992023-MSLH-323QB-2022-04

2024

冶金能源
中钢集团鞍山热能研究院有限公司

冶金能源

CSTPCD北大核心
影响因子:0.319
ISSN:1001-1617
年,卷(期):2024.43(4)