首页|基于差分进化算法的热轧板坯工艺参数优化

基于差分进化算法的热轧板坯工艺参数优化

Optimization of process parameters for hot rolling slab based on differential evolution

扫码查看
针对热轧生产过程中工艺参数优化问题,提出了一种差分进化算法.首先,构建随机森林回归模型预测质量特征;然后,基于随机森林回归模型的工艺参数重要性排序结果选择待优化的工艺参数;最后,利用差分进化算法优化工艺参数并使用最优结果替换待优化的工艺参数.文章提出以缺陷相对发生率平均降低值和平均降低率作为评价指标,对比研究优化前后的结果,与其他优化算法相比,差分进化算法达到了最优性能.应用分析表明,所提算法进行工艺参数优化后,单位板坯中的缺陷个数均少于25,算法执行平均用时为8.57 s,具有良好的可操作性与应用推广价值.
In order to address the optimization of parameters in hot rolling production processes,a dif-ferential evolution algorithm is proposed.Firstly,a random forest regression model is constructed to predict quality characteristic values.Then,based on the feature importance ranking results of the ran-dom forest regression model,the process parameters to be optimized are selected.Finally,the differen-tial evolution algorithm is used to optimize the parameters and the optimal results are used to replace the process parameters to be optimized.The average reduction value and average reduction rate of de-fect occurrence rate are proposed as evaluation indicators.Comparative studies of the results before and after optimization show that compared to other optimization algorithms,the differential evolution algo-rithm achieves optimal performance.Application analysis demonstrates that after optimizing process pa-rameters with the proposed algorithm,the number of defects in the unit slab is less than 25,and the average execution time of the algorithm is 8.57 s,indicating its good operability and practical value.

hot rollingprocess parameter optimizationdifferential evolutionrandom forest

王昊、包向军、周剑波、汪晶、张超

展开 >

大连理工大学数学科学学院

安徽工业大学能源与环境学院

首钢长治钢铁有限公司

上海宝信软件股份有限公司

展开 >

热轧 工艺参数优化 差分进化 随机森林

国家重点研发计划资助项目

2020YFB1711104

2024

冶金能源
中钢集团鞍山热能研究院有限公司

冶金能源

CSTPCD北大核心
影响因子:0.319
ISSN:1001-1617
年,卷(期):2024.43(4)