首页|基于深度学习的多模态框架验证与分析

基于深度学习的多模态框架验证与分析

Validation and Analysis of Multimodal Framework Based on Deep Learning

扫码查看
针对钢铁企业设备健康智能诊断准确性低问题,本文在深度学习和大数据技术基础上,提出了一种基于深度学习的自适应多模态设备健康智能诊断框架,来提高算法对复杂工况的适应能力、抗扰能力和泛化能力.通过该框架在现场的应用,明显提升诊断结果的准确性,提升了传动设备运行管理水平.该框架可在同类项目上推广应用.
Aiming at the problem of low accuracy of equipment health intelligent diagnosis in Iron&Steel enterprises,this paper proposes an adaptive multi-mode equipment health intelligent diagnosis framework based on deep learning and big data technology.Through the application of the framework in the field,the accuracy of the diagnosis results is obviously improved,and the level of the safe and stable operation management of the transmission equipment is improved.The framework can be applied to similar projects.

Device diagnosticsMulti-imodalDeep learning

郁连

展开 >

南京钢铁炼铁事业部 江苏南京 210000

设备诊断 多模态 深度学习

2024

冶金设备
北京中冶设备研究设计总院有限公司 中国金属学会冶金设备分会

冶金设备

影响因子:0.27
ISSN:1001-1269
年,卷(期):2024.(1)
  • 10