首页|轧钢生产线设备性能失效模式识别与预警技术研究

轧钢生产线设备性能失效模式识别与预警技术研究

扫码查看
通过结合钢铁企业现场实际,分析了工业设备性能失效模式识别研究应解决的关键技术问题,提出了构建设备关键部件自感知设计及故障数据集技术、基于深度学习的关键部件失效模式智能识别方法、数据模型的剩余寿命预测技术、监测数据与退化模型联合驱动的剩余寿命预测技术等,并将前述技术应用在钢铁企业轧钢预测性维护系统中,提前预警了轧机设备隐患,有效避免了产线非计划停机的重大损失.为钢铁行业设备关键部件监测、诊断技术的研究与进步提供参考.
Research on Equipment Performance Failure Mode Identification and Early Warning Technology of Steel Rolling Production Line
Based on the on-site actual situation of iron and steel enterprises,this paper analyzes the key technical problems that should be solved in the research of industrial equipment performance failure mode identification,and puts forward the technology of self-sensing design and failure data set of key components of equipment,the intelligent identification method of key component failure mode based on deep learning,the remaining life prediction technology of data model,and the remaining life prediction technology driven by monitoring data and degradation model.The above mentioned technologies are applied to the steel rolling predictive maintenance system of iron and steel enterprises.As a result,the hidden danger of rolling mill equipment was warned in advance,and the heavy loss of unplanned shutdown of production line was effectively avoided.It provides reference for the research and progress of monitoring and diagnosis technology of key components of equipment in iron and steel industry.

equipment failureperformance failure mode identificationfault warning,troubleshootingpredictive maintenance

刘星光、司占强、张艳、贺熙程、张颖军

展开 >

武汉钢铁有限公司条材厂,湖北 武汉 430080

日照钢铁控股集团有限公司,山东 日照 276800

日照海港装卸有限公司,山东 日照 276800

数威至元(广州)科技有限公司,广东 广州 510700

展开 >

设备失效 性能失效模式识别 故障预警 故障诊断 预测性维护

2024

冶金设备管理与维修
鞍山钢铁集团公司

冶金设备管理与维修

影响因子:0.029
ISSN:1006-5644
年,卷(期):2024.42(6)