首页|人工智能助力实现"双碳"目标:新质生产力视角下的机制与对策

人工智能助力实现"双碳"目标:新质生产力视角下的机制与对策

扫码查看
新质生产力将以强大动能推动发展方式绿色转型,助力实现"双碳"目标.人工智能的应用是新质生产力赋能"双碳"目标的重要体现.人工智能将推动低碳技术要素的升级变革,促进相关知识要素的丰富发展,纳入并发挥数据作为新型生产要素的关键作用,促进生产要素的优化组合、协同配置.当前,使用人工智能助力实现"双碳"目标面临潜在挑战,如计算密集型人工智能导致相关碳排放迅速增长、数据要素的流通渠道不畅、数据伦理问题尚未得到高度重视、部分关键人工智能技术仍与国际领先水平存在差距、存在一定的"产-学-研"链条脱节风险等.因此,需要推进计算密集型人工智能绿色化,加强相关排放的检测与核算;加快建设数据要素市场,统筹考虑数据流通与数据安全;建立并完善数据伦理相关标准规范和审查机制;加快推进关键人工智能技术的研究攻关;着力推进"AI+双碳"的成果转化与产业应用.
Leveraging Artificial Intelligence to Achieve Dual Carbon Goals:Mechanisms and Strategies from the Perspective of New Quality Productivity
New quality productivity will drive the green transformation of development models with strong momentum,contributing to the achievement of dual carbon goals.The application of artificial intelligence(AI)is a significant manifestation of new quality productivity empowering these goals.AI will drive the upgrading and transformation of low-carbon technology elements,promote the rich development of related knowledge elements,and incorporate and enhance the key role of data as a new production factor,facilitating the optimal combination and collaborative configuration of production factors.Currently,leveraging AI to achieve dual carbon goals faces potential challenges,such as the rapid increase in carbon emissions from computation-intensive AI,inefficient data flow channels,insufficient attention to data ethics issues,discrepancies between some key AI technologies and international leading levels,and risks of disconnection in the"industry-university-research"chain.Therefore,it is necessary to advance the greening of computation-intensive AI,strengthen the detection and accounting of related emissions;expedite the construction of data factor markets,and consider both data flow and data security;establish and improve standards,norms,and review mechanisms related to data ethics;accelerate research and breakthroughs in key AI technologies;and focus on the transformation and industrial application of"AI+dual carbon"achievements.

甄紫涵、周胜、王灿

展开 >

清华大学核能与新能源技术研究院

清华大学环境学院

新质生产力 "双碳"目标 人工智能 绿色转型 数据要素

2023年度教育部哲学社会科学研究重大课题攻关项目

23JZD042

2024

阅江学刊
南京信息工程大学

阅江学刊

CHSSCD
影响因子:0.313
ISSN:1674-7089
年,卷(期):2024.16(5)
  • 25