首页|基于知识蒸馏和定位引导的Pointpillars点云检测网络

基于知识蒸馏和定位引导的Pointpillars点云检测网络

扫码查看
激光雷达数据由于其几何特性,被广泛应用于三维目标检测任务中.由于点云数据的稀疏性和不规则性,难以实现特征提取的质量和推理速度间的平衡.本文提出一种基于体柱特征编码的三维目标检测算法,以Pointpillars网络为基础,设计Teacher-Student模型框架对回归框尺度进行蒸馏,增加蒸馏损失,优化训练网络模型,提升特征提取的质量.为进一步提高模型检测效果,设计定位引导分类项,增加分类预测和回归预测之间的相关性,提高物体识别准确率.本网络所做改进没有引入额外的网络嵌入.算法在KITTI数据集上的实验结果表明,相比于基准网络,在三维模式下的平均精度值从 60.65%提升到了 64.69%,鸟瞰图模式下的平均精度值从 67.74%提升到 70.24%.模型推理速度为45 FPS,在提升检测精度的同时满足了实时性要求.
Pointpillars point cloud detection network based on knowledge distillation and location guidance
Lidar data is widely used in 3D target detection tasks due to its geometric characteristics.Due to the sparsity and irregularity of point cloud data,it is difficult to achieve the balance between the quality of feature extraction and the speed of reasoning.In this paper,a three-dimensional target detection algorithm based on body-column feature coding is proposed.Based on Pointpillars network,the Teacher-Student model framework is designed to distill the regression frame scale,increase distillation loss,optimize the training network model,and improve the quality of feature extraction.In order to further improve the model detection effect,the positioning guidance classification item is designed to increase the correlation between classification prediction and regression prediction,and improve the object recognition accuracy.The improvement of this network does not introduce additional network embedding.The experimental results of the algorithm on the KITTI dataset show that the average accuracy of the reference network in 3D mode is improved from 60.65%to 64.69%,and the average accuracy of the aerial view mode is improved from 67.74%to 70.24%.The model reasoning speed is 45 FPS,which meets the real-time requirements while improving the detection accuracy.

laser point cloud3D object detectionknowledge distillationclassification confidence

赵晶、李少博、郭杰龙、俞辉、张剑锋、李杰

展开 >

厦门理工学院 电气工程与自动化学院,福建 厦门 361024

厦门市高端电力装备及智能控制重点实验室,福建 厦门 361024

中国科学院 福建物质结构研究所,福建 福州 350108

中国科学院 海西研究院 泉州装备制造研究中心,福建 泉州 362000

展开 >

激光点云 三维目标检测 知识蒸馏 分类置信度

福建省科技计划泉州市科技计划福建省科技厅自然科学研究项目福建省科技厅自然科学研究项目

2021T30032021C065L2020J012852022J05285

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(1)
  • 1
  • 1