首页|DFNet:高效的无解码语义分割方法

DFNet:高效的无解码语义分割方法

扫码查看
针对编解码语义分割网络计算量大、解码结构复杂的问题,提出一种高效无解码的二值语义分割模型DFNet.该模型首先去除主流分割网络中复杂的解码结构和跳跃连接,采用卷积重塑上采样方法重塑特征编码直接得到分割结果,简化网络模型结构;其次在编码器中融合轻量双重注意力机制EC&SA,提高特征编码的通道及空间信息交互,增强网络的编码能力;最后使用PolyCE损失替代常规分割损失,解决正负样本不均衡问题,提高模型的分割精度.在Deep-Globe道路分割和CrackForest缺陷检测等二值分割数据集上的实验结果表明,本文模型的分割精度F1均值和IoU均值分别达到84.69%和73.95%,且分割速度高达94 FPS,远超主流语义分割模型,极大地提高了分割任务效率.
DFNet:efficient decoder-free semantic segmentation networks
To tackle the challenges posed by the cumbersome computation and intricate decoding structure of codec semantic segmentation networks,we present a novel decoder-free binary semantic segmentation model DFNet.By discarding the complex decoding structure and jump connections that are ubiquitous in conventional segmentation networks,our model adopts a convolutional remolding upsampling method to directly reshape feature coding and obtain precise segmentation results,significantly streamlining the network architecture.Moreover,our encoder integrates a lightweight dual attention mechanism EC&SA to facilitate the effective communication of channel and spatial information,bolstering the network's coding capability.To further enhance the model's segmentation accuracy,we replace the traditional segmentation loss with PolyCE loss,a powerful tool that resolves the issue of positive and negative sample imbalance.Experimental results on binary segmentation datasets such as DeepGlobe road segmentation and Crack Forest defect detection show that the segmentation accuracy F1 mean and IoU mean of this model reach 84.69%and 73.95%,respectively,and the segmentation speed is as high as 94 FPS,which far exceeds the mainstream semantic segmentation model and greatly improves the efficiency of the segmentation task.

binary segmentationconvolution remolding upsamplingEC&SAPolyCEroad segmentationdefect detection

刘腊梅、杜宝昌、黄惠玲、章永鉴、韩军

展开 >

辽宁工程技术大学 软件学院, 辽宁 葫芦岛 125000

中国科学院 海西研究院 泉州装备制造研究中心, 福建 泉州 362000

厦门理工学院 电气工程与自动化学院, 福建 厦门 361024

二值分割 卷积重塑上采样 EC&SA PolyCE 道路分割 缺陷检测

福建省科技计划福建省科技计划福建省科技计划福建省科技计划福建省闽都实验室主任基金

2019T30252021T30602021T30322021T30102021ZR107

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(2)
  • 4