首页|基于多光谱数据和融合像素差卷积的壁画线稿提取

基于多光谱数据和融合像素差卷积的壁画线稿提取

扫码查看
使用现有边缘检测方法提取古代壁画的线稿,存在噪声干扰大且丢失信息较多的问题.本文提出一种融合像素差卷积的壁画最优波段线稿提取方法,利用最小噪声分离方法将壁画多光谱数据的有效信息和噪声分离,选择最优主成分波段进行线稿的提取.针对传统卷积提取图像梯度信息的问题,引入像素差卷积提高边缘检测的图像梯度信息.在侧输出网络加入尺度增强模块(SEM)丰富多尺度特征,同时针对像素级别不平衡引起的像素错误分类问题,设计了基于图像相似度的Dice损失函数策略,逐级最小化像素距离获得清晰图像边缘,并利用壁画数据集先验知识微调模型解决数据集不足的问题.实验结果表明,本文方法可以在壁画褪色和噪声较多的场景下提取出较为清晰的线稿,线稿图像的SSIM和RMSE均优于其他算法,分别提高了2%~10%和2%~4%;在公开数据集BIPED上对模型进行验证,所提方法的ODS和OIS较PiDiNet分别提高0.005和0.007.该方法对褪色及具有病害的壁画可以提取出清晰完整的线稿图像.
Mural sketch extraction based on multispectral data and fused pixel difference convolution
Extracting the line drawings of ancient frescoes using existing edge detection methods suffers from high noise interference and more information loss.In this paper,we propose a fusion pixel difference convolution method to extract the optimal band of mural lines.The minimum noise separation method is used to separate the effective information and noise from the multispectral data of the mural,and the optimal principal component band is selected for the extraction of the line art.For the problem of traditional convolution to extract image gradient information,pixel difference convolution is introduced to improve the image gradient information for edge detection.A scale enhancement module(SEM)is added to the side output network to enrich the multiscale features.Meanwhile,for the pixel misclassification issues caused by pixel level imbalance,Dice loss function strategy based on image similarity is designed to minimize the pixel distance step by step to obtain clear image edges,and the mural dataset prior knowledge fine-tuning model is used to solve the problem of insufficient dataset.The experimental results show that the method in this paper can extract clearer line drawings in scenes with faded and noisy murals,and the SSIM and RMSE of the line drawing images are better than other algorithms,improving 2%~10%and 2%~4%,respectively,compared with PiDiNet.The model is validated on the public dataset BIPED,and the ODS and OIS of the proposed method are improved compared with PiDiNet by 0.005 and 0.007,respectively.The method can extract clear and complete line images for faded and diseased murals.

sketch extractionspectral imagingpixel difference convolutionpixel-level balancingmural

张换换、王慧琴、王可、王展、甄刚、贺章

展开 >

西安建筑科技大学 信息与控制工程学院, 陕西 西安 710055

陕西省文物保护研究院, 陕西 西安 710075

陕西省考古研究院, 陕西 西安 710054

线稿提取 光谱成像 像素差卷积 像素级平衡 壁画

陕西省自然科学基础研究计划2022年度陕西省教师教育改革与教师发展研究项目西安建筑科技大学自然科学专项

2021JM-377ZR21033

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(2)
  • 2