首页|改进的YOLOv5s太阳能电池片缺陷检测算法

改进的YOLOv5s太阳能电池片缺陷检测算法

扫码查看
针对太阳能电池片缺陷检测方法存在精度低的问题,提出一种基于改进的YOLOv5s太阳能电池片表面缺陷检测算法.首先,为了解决电池片小目标缺陷检测问题,提出了上下文Transformer网络(CoT),可以为小目标提供全局上下文信息,帮助模型更好地预测小目标.其次,将CBAM注意力加入到Head部分的C3模块,能够更好地捕捉输入特征图的重要通道和空间位置,提高模型的性能和鲁棒性.接着,使用轻量级的通用上采样算子CARAFE减少上采样过程中特征信息的损失,保证了特征信息的完整性.最后,使用WIoU作为边界框损失函数,大幅提升了回归的准确性,并且有助于快速实现模型的收敛.实验结果显示,改进后的YOLOv5s相较于原始算法在Precision、Recall、mAP@0.5三个指标上分别提高了5.5%、4.1%、3.3%,检测速度达到了76 FPS,满足太阳能电池片缺陷检测要求.
Defect detection algorithm of improved YOLOv5s solar cell
Aiming at the problem of low accuracy of the method for solar cell defect detection,a surface defect detection algorithm based on the improved YOLOv5s solar cell is proposed.First,in order to solve the problem of small target defect detection on the cell sheet,the Contextual Transformer Network(CoT)is proposed,which can provide global contextual information for small targets and the model better at predicting small targets.Secondly,by adding CBAM attention to the C3 module in the Head part,the important channels and spatial locations of the input feature maps can be better captured to improve the performance and robustness of the model.Next,the integrity of feature information is ensured by using CARAFE,a lightweight generalized up-sampling operator,to reduce the loss of feature information during up-sampling.Finally,by using WIoU as the bounding box loss function,the accuracy of the regression can be greatly improved and the convergence of model can be achieved quickly.The experimental results show that compared with the original algorithm,the improved YOLOv5s improves the three indicators of Precision,Recall,and mAP@0.5 by 5.5%,4.1%,and 3.3%respectively,and the detection speed reaches 76 FPS,which meets the requirements of solar cell defect detection.

solar cellYOLOv5scontextual transformer networkCARAFEloss function

彭雪玲、林珊玲、林志贤、郭太良

展开 >

福州大学 先进制造学院, 福建 泉州 362252

中国福建光电信息科学与技术实验室, 福建 福州 350116

太阳能电池片 YOLOv5s 上下文Transformer网络 CARAFE 损失函数

国家重点研发计划福建省自然科学基金国家自然科学基金青年科学基金

2021YFB36006032020J0146862101132

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(2)
  • 5