首页|NCA-MobileNet:一种轻量化人脸表情识别方法

NCA-MobileNet:一种轻量化人脸表情识别方法

扫码查看
针对目前人脸面部表情识别方法存在参数量多、计算资源消耗大和识别精度低的问题,提出了一种基于条件协调注意力机制的轻量化人脸面部表情识别方法.首先,对MobileNet V3网络层数进行缩减,同时将倒残差结构中间通道数和输出通道数增大至原来的1.5~3.2倍,使用Mish代替Hardswish激活函数,实现特征提取后的非线性化.其次,引入改进的协调注意力机制,在张量信息嵌入中沿水平和竖直方向依次通过最大池化和平均池化进行编码,并通过张量信息集成产生具有全局感受野和精确位置信息特征,提取面部表情在空间和通道位置上的详细信息.最后,在公开数据集FERPlus和RAF-DB上进行实验,结果表明所提方法参数量降低15.91%,准确率分别为88.84%和85.90%,比改进前模型准确率分别提升0.83%和1.39%.该方法具有良好的识别性能,验证了所提方法的有效性.
NCA-MobileNet:a lightweight facial expression recognition method
At present,facial expression recognition methods have the problems of large number of parameters,large consumption of computing resources and low recognition accuracy.Aiming at the above problems,a lightweight human facial expression recognition method based on conditional coordinated attention mechanism is studied.First,the number of layers of MobileNet V3 network is reduced,while the numbers of intermediate channels and output channels of the inverse residual structure are increased to 1.5~3.2 times of the original number.Mish is used instead of Hardswish activation function to realize the nonlinearization after feature extraction.Secondly,an improved coordinated attention mechanism is introduced to encode the tensor information embedding along horizontal and vertical directions sequentially by maximum pooling and average pooling.And tensor information integration is used to generate features with global sensory field and precise location information to extract detailed information of facial expressions in space and channel location.Finally,experiments are conducted on the publicly available datasets FERPlus and RAF-DB,and the results show that the proposed method reduces the number of parameters by 15.91%,and the accuracy rates are 88.84%and 85.90%,respectively,which are 0.83%and 1.39%higher than the accuracy rates of the model before improvement.The method has good recognition performance and validate the effectiveness of the proposed method.

facial expression recognitionlightweightattention mechanismfeature extraction

左义海、白武尚、何秋生

展开 >

太原工业学院 工程训练中心,山西 太原 030008

太原科技大学 电子信息工程学院,山西 太原 030024

表情识别 轻量化 注意力机制 特征提取

山西省自然科学基金山西省教学改革项目

20210302123222J20221103

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(4)
  • 19