首页|基于空间金字塔注意力机制残差网络的高光谱图像分类

基于空间金字塔注意力机制残差网络的高光谱图像分类

扫码查看
为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型.首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征.然后利用空间金字塔注意力模型实现多尺度联合特征关注,提升对联合特征的敏感性,并有效地强调并聚焦空间和光谱信息,实现信息交互.最后经过Softmax分类器获得分类标签.本文提出的方法在MUUFL和Tento数据集上进行了实验,结果表明,本文算法的总体分类精度分别达到了94.08%和98.32%.相比于其他高光谱分类模型,本文模型的收敛速度较快,在分类性能上取得了明显的提升,获得了更高的地物分类精度.
Hyperspectral image classification based on spatial pyramid attention mechanism combined with ResNet
In order to extract spatial-spectral joint features of hyperspectral images,this paper proposes a hyperspectral image classification model based on an improved spatial pyramid attention mechanism residual network.Firstly,principal component analysis is used to remove spectral redundancy,and combined with spatial pyramid attention mechanism,a residual network based hyperspectral image classification model is improved to obtain refined features.Then,the spatial pyramid attention model is used to achieve multi-scale joint feature attention,improve sensitivity to joint features,and effectively emphasize and focus on spatial and spectral information for information exchange.Finally,the classification label is obtained through the Softmax classifier.The proposed method in this paper is tested on MUUFL and Trento datasets,and the experimental results show that the overall classification accuracy of the proposed algorithm reaches 94.08%and 98.32%,respectively.Compared to other hyperspectral classification models,the convergence speed of this model is faster,and it achieves significant improvement in classification performance with higher ground object classification accuracy.

hyperspectral imageimage classificationattention mechanismspatial-spectral feature

刘和、宋璎珞、胡龙湘、刘国辉、王侃、王爱丽

展开 >

国网黑龙江省电力有限公司 综合信息中心,黑龙江 哈尔滨 150010

哈尔滨理工大学 测控技术与通信工程学院 黑龙江省激光光谱技术及应用重点实验室,黑龙江 哈尔滨 150080

高光谱 图像分类 注意力机制 空间-光谱特征

国家电网黑龙江省电力公司科技项目

522411230008

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(6)
  • 4