首页|基于迭代传播网络的快速鲁棒的微光图像增强

基于迭代传播网络的快速鲁棒的微光图像增强

扫码查看
微光图像存在低对比度与低信噪比等问题,低质量的采集图像严重影响了后续的观察与测量.为了提升复杂应用场景下的微光图像质量,本工作设计了迭代传播网络以快速、鲁棒地完成微光图像增强任务.首先,本工作设计了多段式预测模型,以渐进的方式建模照度预测任务,增强模型的非线性拟合能力以适应未知的现实情况.考虑多段式级联网络带来的推理负担,本工作还基于Retinex前向传播模型构建迭代循环,使多阶段模型的每个阶段都收敛于类似甚至同一状态以优化推理过程,并在增强模型性能的同时大幅提高了推理速度.本工作基于公开数据集进行了对比实验,其中峰值信噪比及结构相似度的均值分别高出以往最优秀对比算法11.8%与3.5%.在此基础上,本工作还将迭代传播网络用于增强实际采集的低曝光摄影图像与低激发荧光显微图像,实验结果证明其具有优异的图像增强性能与泛化性.
Fast and robust low-light image enhancement based on iterative propagation network
Low-light images suffer from low contrast and low signal-to-noise ratio,and the low quality of captured images seriously affects the subsequent observation and measurement.To enhance the quality of low-light images in complex application scenarios,this paper designs an iterative propagation network to accomplish the image enhancement task of micro-optical images in a fast and robust manner.Firstly,this work designs a multi-stage prediction model to model the illumination prediction task incrementally and enhances the nonlinear fitting capability of the model,thus adapting to unknown realistic situations.Considering the inference burden caused by the multi-stage model,this work also constructs iterative loops based on the Retinex forward propagation model to ensure each stage of the multi-stage model converges to a similar or even the same state to optimize the inference process,and significantly improves the inference speed while enhancing the model performance.This work conducts comparative experiments based on publicly available datasets,the average values of peak signal-to-noise ratio and structural similarity are 11.8%and 3.5%higher than the previous best comparison algorithms,respectively.The iterative propagation network is also used to enhance real-world low-exposure photographic images and low-excitation fluorescence microscopy images,and the experimental results demonstrate its excellent image enhancement performance and generalization.

neural networklow-light image enhancementcascaded structureretinex model

肖志博、蒋志龙、孔艳

展开 >

江南大学 理学院,江苏 无锡 214122

神经网络 微光图像增强 级联结构 Retinex模型

国家自然科学基金

12004141

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(7)
  • 3