首页|融合自监督对比学习的雾天街景语义分割算法

融合自监督对比学习的雾天街景语义分割算法

扫码查看
针对雾天环境能见度低导致街道物体识别困难、分割速度慢等问题,提出了一种融合自监督对比学习的雾天街景语义分割算法.该算法选用轻量级网络MobileNetV2作为主干网络,设计深度聚合空洞空间金字塔池化模块,并使用带有扩张系数的深度可分离卷积替换普通卷积丰富特征多样性.然后通过融合对比学习框架,增加语义相似像素的相似度,保持不同语义像素之间的距离,从而提高模型对小目标物体细节边缘的表达能力和辨别能力.最后提出一种新的融合损失函数,采用监督学习和自监督学习共同指导网络训练,学习深度特征表示.实验结果表明,该模型在Foggy Cityscapes数据集上的平均交并比可达到74.35%,类别平均像素准确率为83.59%,像素准确率可达到95.85%,相比语义分割网络DeepLabV3+模型分别提高了3.82%、3.99%和1.02%,同时模型参数量为2.88M,比DeepLabV3+模型的参数量缩减近55%,优化了网络计算消耗.该算法在雾天语义分割中拥有良好的性能,在降低模型参数量的同时保持了高分割精度,具有良好的鲁棒性.
Semantic segmentation algorithm for foggy cityscapes images by fusing self-supervised contrastive learning
To address the problems of difficult street object recognition and slow segmentation due to low visibility in foggy scence,a foggy cityscapes semantic segmentation algorithm incorporating self-supervised contrastive learning is proposed.The algorithm selects the lightweight network MobileNetV2 as the backbone network.Deep aggregation atrous spatial pyramid pooling module is designed and a deep separable convolution with dilation rate is used to replace the normal convolution to enrich feature diversity.Then,we increase the similarity of semantically similar pixels and maintain the distance between different semantic pixels by fusing the contrastive learning framework,so as to improve the model's ability to represent and discriminate the detailed edges of small target objects.Finally,a new fusion loss function is proposed,and supervised learning and self-supervised learning are used to jointly guide the network training to learn deep feature representation.The experimental results show that the model can achieve MIoU of 74.35%,MPA of 83.59%,and PA of 95.85%on the Foggy Cityscapes dataset,which improves 3.82%,3.99%and 1.02%respectively,compared with the semantic segmentation network DeepLabV3+model.Meanwhile,the number of model parameters is 2.88M,which is nearly 55%less than the number of DeepLabV3+model,optimizing the network computation consumption.The algorithm has good performance in foggy cityscapes semantic segmentation,reducing the number of model parameters while maintaining high segmentation accuracy and good robustness.

semantic segmentationself-supervised learningdeep aggregationcontrastive learningloss function

刘丽伟、王芮、孟续涛

展开 >

长春工业大学 计算机科学与工程学院,吉林 长春 130012

语义分割 自监督学习 深度聚合 对比学习 损失函数

国家自然科学基金吉林省科技厅项目

61803043YDZJ202201ZYTS414

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(7)
  • 3