首页|小样本点云分类的原型分布校正

小样本点云分类的原型分布校正

扫码查看
针对基于度量的小样本学习方法原型网络中因支撑样本较少,出现的类原型容易发生偏差、网络泛化性差等问题,提出一种基于高斯分布的原型校正方法.首先根据原型网络得到类原型,通过类原型对查询样本进行近邻匹配,得到查询样本的伪标签;然后得到伪标签样本特征的高斯分布信息,即均值和方差;最后从这些分布中进行采样,生成足够丰富的样本去扩展支撑集,进而获得更准确的类原型,改善分类性能.同时对于现有的特征提取网络引入正交约束,改善模型的泛化性.本文在常见点云数据集上进行了小样本分类实验,并进一步做了消融实验.在ModelNet40、ModelNet40-C数据集上,所提方法的平均分类精度和现有方法相近;在噪声数据集ScanObjectNN和ScanObjectNN-PB上,平均分类精度优于现有方法1.36%.进一步的消融实验验证了原型校正和网络参数约束的有效性.所提方法能够有效缓解小样本点云分类中的过拟合问题,对于扰动数据具有较强的鲁棒性.
Prototype distribution correction for few-shot point cloud classification
A prototype correction method based on Gaussian distribution is proposed to address the issues of class prototypes being prone to bias and poor network generalization that arise in metric-based few-shot learning methods due to the scarcity of support samples.The proposed method first obtains the class prototypes based on the prototypical network,and perform nearest neighbor matching on the query samples through the class prototypes to get the pseudo labels of the query samples.Then,the Gaussian distribution information of the pseudo labeled sample features is acquired,namely mean and variance.Finally,enough samples are generated by sampling from these distributions to expand the support set,thus obtain more accurate class prototypes and improve classification performance.At the same time,orthogonal constraints are introduced into the existing feature extraction network to improve the generalization of the model.The few-shot classification experiments and further ablation experiments are performed on common point cloud datasets.On the ModelNet40 and ModelNet40-C datasets,the average classification accuracy of the proposed method is comparable to the existing method.On the noisy ScanObjectNN and ScanObjectNN-PB datasets,the average classification accuracy is better than the existing method by 1.36%.The further ablation experiments verify the effectiveness of prototype correction and network parameter constraints.The proposed method can effectively alleviate the overfitting problem in few-shot point cloud classification and has strong robustness against perturbed data.

3D point cloud classificationfew-shot learningprototype correctionfeature enhancementGaussian distribution

冯远志、夏羽、郭杰龙、邵东恒、张剑锋、魏宪

展开 >

中国科学院 福建物质结构研究所,福建 福州 350002

中国科学院大学,北京 100049

上海宇航系统工程研究所,上海 201108

中国福建光电信息科学技术创新实验室,福建 福州 350108

展开 >

3D点云分类 小样本学习 原型校正 特征增强 高斯分布

中国福建光电信息科学技术创新实验室泉州市科技项目

2021ZZ1202021C065L

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(9)