首页|残差学习与层注意力相结合的轻量级图像超分辨

残差学习与层注意力相结合的轻量级图像超分辨

扫码查看
基于卷积神经网络(CNN)的方法在图像超分辨率问题中取得了良好的性能,然而,大多数超分辨率研究都采用复杂的层连接策略来提高特征利用率,这使得网络的深度不断加大,参数量持续上涨,很难部署在移动终端.针对该问题,本文提出一种残差学习与层注意力结合的轻量级图像超分辨(RLAN)算法,更高效地提取并聚合重要特征.首先,采用3×3的卷积层进行浅层特征提取.然后,在非线性映射部分,通过堆叠改进的局部残差特征块(RLFB)进行局部特征学习,同时引入层注意力模块(LAM)来利用残差分支上的层次特征进一步提升特征聚合的效果.最后,采用像素注意力重建块(PARB)进行图像重建,以很小的参数成本提升重建质量.与NTIRE2022冠军RLFN相比,RLAN最终以仅373k的参数量取得了更优越的性能,在4个数据集上的平均PSNR与SSIM分别提升了0.35 dB与0.001 4.实验结果表明,RLAN可以精准地恢复SR图像,有效地减少了边缘处的伪影.
Lightweight image super-resolution combining residual learning and layer attention
Convolutional neural networks(CNNs)have shown great performance in image super-resolution(SISR)problems.However,most super-resolution studies use complex layer connection strategies to improve feature utilization,which makes the depth and the number of parameters of the network increase continuously,and makes it hard to deploy on mobile terminals.Aiming at this problem,a lightweight image super-resolution network combining residual learning and layer attention is proposed to extract and aggregate important features more efficiently.Firstly,a 3×3 convolutional layer is used for shallow feature extraction.In the nonlinear mapping part,the improved local residual feature blocks(RLFB)are stacked for local feature learning,and the layer attention module(LAM)is introduced to further improve the effect of feature aggregation by using the hierarchical features on the residual branch.Finally,the pixel attention reconstruction block(PARB)is used for image reconstruction to improve the reconstruction quality with a small parameter cost.Compared with the NTIRE 2022 champion RLFN,RLAN finally achieves superior performance with only 373k parameters,and the average PSNR and SSIM on the four datasets are improved by 0.35 dB and 0.001 4,respectively.The comprehensive experiments demonstrate that RLAN can accurately restore SR images and effectively reduce the artifacts at the edges.

image super-resolutionconvolutional neural networkresidual learningattention mechanism

吴笛凡、张选德

展开 >

陕西科技大学 电子信息与人工智能学院,陕西 西安 710021

图像超分辨率 卷积神经网络 残差学习 注意力机制

国家自然科学基金

61871260

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(10)
  • 2