首页|TFT-LCD表面Mura缺陷的AOI检测研究进展

TFT-LCD表面Mura缺陷的AOI检测研究进展

扫码查看
液晶显示屏幕的表面缺陷检测是保证TFT-LCD等液晶显示屏质量稳定性的关键.得益于在检测表面缺陷方面高效率、低成本的优势,机器视觉技术目前已经成为TFT-LCD质量检测的主要手段.本文首先概述了液晶屏的发展历程,列举了常见Mura缺陷的类型,分别介绍了基于传统图像处理和基于深度学习的Mura缺陷检测方法,概述了图像滤波和图像亮度校正等图像预处理技术的研究动态.本文重点阐述了监督学习、无监督学习和迁移学习等人工智能技术在TFT-LCD表面Mura缺陷检测领域的应用,并对基于机器视觉的TFT-LCD表面Mura缺陷检测的技术发展趋势进行了展望.
Development of AOI inspection of Mura defects on TFT-LCD surface
Surface defect inspection is crucial for ensuring the quality stability of liquid crystal display(LCD)screens,particularly for TFT-LCDs.Known for its high efficiency and low cost,machine vision technology has become the primary means for inspecting TFT-LCD quality.This paper reviews the development of LCD and lists the common types of Mura defects.The traditional image processing methods and deep learning for detecting Mura defects are introduced,and recent advancements in image preprocessing techniques such as image filtering and brightness correction are summarized.The application of artificial intelligence techniques,such as supervised learning,unsupervised learning and transfer learning is introduced,in the detection of Mura defects on TFT-LCD surfaces.Finally,the research directions for machine vision-based Mura defect inspection technology on TFT-LCD are anticipated.

TFT-LCDMura defectsmachine visionimage processingdeep learning

陈泽康、沈奕、翟晨阳、董晨瑶、王双喜

展开 >

汕头大学 工学院,广东 汕头 515063

广东省车载显示触控技术重点实验室,广东 汕头 515041

TFT-LCD Mura缺陷 机器视觉 图像处理 深度学习

广东省科技计划广东省教育厅创新强校工程

STKJ2023070GD20231202

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(11)