首页|基于改进ShuffleNetV2网络的遥感场景分类模型

基于改进ShuffleNetV2网络的遥感场景分类模型

扫码查看
针对传统的遥感场景分类模型参数量大、需要的计算资源较多、特征识别不均匀导致分类精度低的问题,提出一种基于改进ShuffleNetV2网络和知识蒸馏的遥感图像分类方法.首先为了解决在远距离、高空间的遥感场景下,很难对微小特征进行均匀提取的问题,引入CBAM通道空间注意力机制;其次将ShuffleNetV2网络进行轻量化改进,缩减改进基本堆叠单元;最后使用迁移学习和知识蒸馏的方法,载入预训练好的模型,并以ResNet101作为教师网络,改进后的ShuffleNetV2作为学生网络,提高遥感场景分类精度.实验结果表明,改进后的ShuffleNetV2的参数量缩减28%,准确率从91.8%提升到94.8%,相比轻量模型MoblieNetV3、MobileViT分别提升了4.2%、4.5%.本研究所改进的模型在保持较高分类精度的同时占用更低的存储空间.
Remote sensing scene classification model based on improved ShuffleNetV2 network
In response to the challenges posed by traditional remote sensing scene classification models,which are characterized by a large number of parameters requiring substantial computational resources,and issues related to uneven feature recognition leading to low classification accuracy,this study proposes a remote sensing image classification method based on an improved ShuffleNetV2 network and knowledge distillation.To address the difficulty in uniformly extracting subtle features in remote sensing scenes at long distances and high altitudes,we introduce the CBAM channel space attention mechanism.Furthermore,we modify the basic stacking unit of ShuffleNetV2 to be lightweight.Finally,employing transfer learning and knowledge distillation techniques,we load a pre-trained model with ResNet101 as the teacher network and the enhanced ShuffleNetV2 as the student network to enhance remote sensing image classification accuracy.Experimental results demonstrate that the improved ShuffleNetV2 reduces parameter count by 28%while increasing accuracy from 91.8%to 94.8%.Compared with lightweight models such as MobileNetV3 and MobileViT,our approach achieves improvements of 4.2%and 4.5%,respectively.Importantly,our enhanced model maintains high classification accuracy while occupying less storage space.

deep learningimage classificationattention mechanismlightweight neural networkknowledge distillation

徐慧雯、赵伟超、李泽

展开 >

中国科学院 长春光学精密机械与物理研究所 数字中心,吉林 长春 130033

深度学习 图像分类 注意力机制 轻量级神经网络 知识蒸馏

中国科学院战略性先导科技专项国家基础学科公共科学数据中心项目

XDB0500103NBSDC-DB-02

2024

液晶与显示
中科院长春光学精密机械与物理研究所 中国光学光电子行业协会液晶分会 中国物理学会液晶分会

液晶与显示

CSTPCD北大核心
影响因子:0.964
ISSN:1007-2780
年,卷(期):2024.39(11)