首页|基于数据挖掘的冷轧轧制力优化方法研究

基于数据挖掘的冷轧轧制力优化方法研究

扫码查看
针对广泛应用的Bland-Ford-Hill冷轧轧制力工艺模型,通过挖掘现场实际数据隐含的规律,对其变形抗力和摩擦因数的模型参数进行优化,以提高轧制力计算精度.首先,推导由轧制力计算变形抗力和摩擦因数的逆计算算法,采用L-M非线性多项式回归方法对变形抗力和摩擦因数的模型参数进行优化回归计算,建立轧制力优化算法;然后,根据现场海量的实际数据,采用数据挖掘的方法,使用上述优化方法计算更加符合现场实际的变形抗力和摩擦因数的模型参数.优化结果在线运行后,轧制力精度明显提高.
Study on the method of cold rolling force optimization based on data mining
The deformation resistance and friction parameters in the widely used Bland-Ford-Hill model of cold rolling force technology are optimized,by mining the hidden rules within the actual data,to improve the calculation accuracy of rolling force.In the beginning,the inverse algorithm of deformation resistance and the friction calculation was derived,and the optimized regression deformation resistance model parameters and friction coefficient model parameters were calculated by using L-M nonlinear polynomial regression method to establish the rolling force optimization model.Then,according to the massive actual field data and using data mining method,the model parameters which suit deformation resistance and friction coefficient better were obtained by adopting the above optimization method.After running the optimization results online,the rolling force accuracy is improved obviously.

cold rolling force optimizationdeformation resistancefriction coefficientinverse calculationL-M nonlinear polynomial regressiondata mining

高雷、王彦辉、郭立伟、王佃龙

展开 >

北京首钢自动化信息技术有限公司自动化研究所,北京100041

冷轧轧制力优化 变形抗力 摩擦因数 逆计算 L-M非线性多项式回归 数据挖掘

2016

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2016.40(6)
  • 4
  • 7