首页|基于MobileNetV2-SSD的烧结台车车轮检测

基于MobileNetV2-SSD的烧结台车车轮检测

Sintering trolley wheel detection based on MobileNetV2-SSD

扫码查看
烧结台车是烧结机的关键组成部分,如何给台车的车轮进行自动加油润滑使其可以稳定运行是保障烧结机作业率和烧结矿产量的主要因素之一,而自动加油润滑的难点在于实时获取车轮的位置信息.因此,针对台车车轮的实时定位问题,提出了基于MobileNetV2-SSD的台车车轮检测模型,考虑到烧结现场恶劣的工作环境,无法配备常规的计算机来运行模型,为了使模型可以在算力较低的移动端或嵌入式设备上运行,本文提出的检测模型在主干网络上选择了轻量型的MobileNetV2,整体检测架构采用了单结段多框检测器(sin-gle shot multibox detector,SSD),使其在兼顾检测精度的同时,检测速度得到进一步提高.最后,在实际采集的数据集上,该模型的准确率、召回率及平均类别准确率都达到了 90%以上,同时在GTX1060或以上显卡的检测速率都达到了40 fps以上,满足了工业实时检测的标准,试验结果证明了模型的有效性.
The sintering trolley is a key component of the sintering machine.How to automatically re-fuel and lubricate the wheels of the sintering trolley to ensure its stable operation is one of the main factors to ensure the operation rate of the sintering machine and the sinter output.The difficulty of au-tomatic refueling and lubrication is to obtain the position information of the wheels in real time.Therefore,a trolley wheel detection model based on MobileNetV2-SSD for the real-time positioning of trolley wheels was proposed.Considering the harsh working environment of the sintering site,it is im-possible to equip a conventional computer to run the model.In order to make the model run on a mo-bile terminal or embedded device with low computational power,the detection model proposed in this paper selects the lightweight MobileNetV2 on the backbone network,and the overall detection archi-tecture uses SSD,the detection speed is further improved while taking into account the detection ac-curacy.Finally,the precision,recall and mAP value of the model have reached more than 90%on the actual data set collected,and the detection rate of the GTX1060 or above graphics card has reached more than 40 fps,meeting the industrial real-time detection standards.The experimental re-sults prove the effectiveness of the model.

sintering trolleywheel detectionneural networkMobileNetV2SSD

张笑凡、方田、石海军、徐志坤、沈亮

展开 >

中冶华天工程技术有限公司,安徽马鞍山 243000

烧结台车 车轮检测 神经网络 MobileNetV2 SSD

安徽省重点研究与开发计划项目

202104a05020015

2023

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2023.47(5)
  • 1
  • 7