首页|基于数据驱动的热轧线精轧入口温度修正策略

基于数据驱动的热轧线精轧入口温度修正策略

扫码查看
传统热连轧生产过程中,由于带钢急剧氧化现象存在,常导致精轧入口测温受带钢表面氧化铁皮遮挡与干扰出现较大测量偏差,进而成为扰动轧制参数计算设定与模型自学习调控的重要影响因素.基于机器学习神经元网络建立精轧入口温度预测模型,融合极差分析方法确定数据特征,依据机理与设备条件筛选数据,通过预测带钢粗轧出口温度,融合机理模型温降计算后得到精轧温度预测值,以修正带钢表面氧化铁皮带来的精轧入口温度测量扰动.通过连续生产数据分析比较,其温度偏差由±9.15℃下降至±5.33 ℃.模型评估指标R2由0.41提升至0.84.针对带钢测量温度出现急剧降幅实例,样本精轧测温处方差均值由48.45下降至11.02.经性能评估后认为预测模型精度较高,泛化性较强.
A data-driven entry temperature correction strategy for finishing rolling of hot rolling lines
During the traditional hot strip rolling production process,due to the rapid oxidation of the strip steel,the significant measurement deviation arises in the temperature measurement at finishing rolling entrances due to the obstruction and interference of the oxidized iron scale on the surface of the strip steel,which becomes an important influencing factor for the calculation and setting of dis-turbance rolling parameters and model self-learning regulation.A finishing rolling entry temperature prediction model was established based on machine learning neural networks,which integrates range analysis methods to determine data features and screens data based on mechanism and equipment conditions.The model predicts the rough rolling outlet temperature and calculates the temperature drop of the mechanism model to obtain the predicted value of rolling temperature,which aims at cor-recting the disturbance of finishing rolling entry temperature measurement caused by iron oxide scale on the surface of strip steel.Through continuous production data analysis and comparison,the temper-ature deviation decreases from±9.15℃ to±5.33℃.The model evaluation indicator R2 has been increased from 0.41 to 0.84.The average value of the finishing rolling entry temperature difference of samples with sharp pits in the strip steel temperature decreases from 48.45 to 11.02.After perform-ance evaluation,it's believed that the prediction model has high accuracy and strong generalization.

hot rolled stripfinishing rolling entry temperature correctiontemperature predictionneural network coupling

李俊南、莫琳琳、李博

展开 >

广西柳州钢铁集团有限公司,广西柳州 545002

热轧带钢 精轧入口温度修正 温度预测 神经网络耦合

2024

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2024.48(1)
  • 17