首页|铁前一体化烧结数智配矿系统的开发

铁前一体化烧结数智配矿系统的开发

扫码查看
针对钢铁生产中烧结配料过程,由于铁矿粉价格波动较大、烧结原料信息复杂以及烧结配矿受到多种因素影响,应用传统遗传算法(genetic algorithm,GA)进行配料优化容易陷入局部最优.为解决这一问题,本研究提出了一种改进GA的数学模型,旨在优化烧结配矿过程,以应对这些影响对烧结配料成本的挑战.该模型可以根据具体问题环境来自动调整操作过程中算子的大小,有效避免了传统GA过早收敛的问题,确保算法在优化烧结建模时最终输出全局最优解.系统以铁矿粉为出发点,采用Python、MySQL和PyQt5等相关技术手段构建铁前一体化烧结配矿模型,通过对后端数据的分析处理最终形成烧结优化配矿方案.
Development of an intelligent sintering ore blending system for integration before ironmaking
In the context of the sintering blending process in steel production,challenges arise due to significant fluctuations in iron ore powder prices,the complexity of sintering raw material information,and the impact of various factors on sintering ore blending.Traditional genetic algorithm(GA)can easily fall into local optima.To address this issue,this study proposed a mathematical model based on an improved GA aimed at optimizing the sintering ore blending process to tackle the challenges posed by these influences on the cost of sintering materials.The model automatically adjusts the size of op-erators during the operational process based on the specific problem environment,effectively avoiding the premature convergence issue encountered by traditional GA.This ensures that the algorithm ulti-mately outputs a globally optimal solution when optimizing the sintering modeling.Starting with iron ore powder,the system utilizes technologies such as Python,MySQL and PyQt5 to construct an inte-grated sintering ore blending model.Through analysis and processing of backend data,the system ul-timately generates optimized sintering ore blending solutions.

sintering ore blendingimproved genetic algorithmmathematical modelintegrationdata analysis

徐云、孙洪军、马艳、储健、代兵

展开 >

安徽工业大学低碳研究院,安徽马鞍山 243000

安徽工业大学冶金减排与资源综合利用教育部重点实验室,安徽马鞍山 243000

本钢板材股份有限公司炼铁总厂,辽宁本溪 117000

本溪市商贸服务学校,辽宁本溪 117000

展开 >

烧结配矿 改进遗传算法 数学模型 一体化 数据分析

安徽省自然科学基金安徽省高等学校科学研究重点项目

2008085 ME1462023 AH051108

2024

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2024.48(2)
  • 20