首页|基于长短期记忆网络的富氧鼓风条件下高炉全压差预测建模方法

基于长短期记忆网络的富氧鼓风条件下高炉全压差预测建模方法

扫码查看
高炉冶炼过程中,受到工况动态变化及生产现场复杂因素的影响,压差的波动存在一定的时滞性,要实现基于实时在线数据精准提前预报压差还存在一定困难.针对该问题,基于高炉实际冶炼过程中,其具有多元变量的、时间上前后依赖的时序数据特点,分别采用了能够有效反映生产过程参数波动程度的波动率分析和决策树特征重要性分析方法,选取了不同的模型输入特征子集,从而分别建立了基于长短期记忆网络(long short-term memory,LSTM)的时序性压差预测模型.两种方法对比结果表明,基于波动率分析确定输入特征的LSTM预测模型在预测误差范围[-5,+5]kPa以内,命中率提高了0.761%.基于生产参数的波动率分析的特征选择方法,能够有效提升LSTM模型的预测精度,验证了在高炉富氧鼓风条件下,时序性压差预测模型输入特征选取方法的有效性.
LSTM-based modelling method for predicting pressure difference in blast furnace under oxygen-enriched blast conditions
In the process of blast furnace smelting,under the influence of dynamic changes of working conditions and complex factors at the production site,the fluctuation of differential pressure has a cer-tain time lag,and it is still difficult to realize the accurate forecast of differential pressure based on re-al-time online data.To address this problem,based on the actual smelting process of the blast fur-nace,which has the characteristics of multivariate and time-dependent time series data,the volatility analysis and decision tree feature importance analysis methods that can effectively reflect the degree of fluctuation of the production process parameters are adopted,and different subsets of the model in-put features are selected,so as to establish the temporal pressure difference prediction model based on the long short-term memory(LSTM).The comparison results of the two methods show that the LSTM prediction model based on volatility analysis to determine the input features has an improved hit rate of 0.761%within the prediction error range[-5,+5]kPa.The feature selection method based on the volatility analysis of production parameters can effectively improve the prediction accu-racy of the LSTM model,and verify the validity of the input feature selection method of the temporal differential pressure prediction model under the condition of oxygen-enriched blast furnace.

blast furnace pressure differenceprediction modelfeature extractionlong short-term memory(LSTM)algorithmvolatility analysisdecision tree feature importance analysis

秦梓杰、贺东风、冯凯、王广伟、刘纲、刘崇

展开 >

北京科技大学冶金与生态工程学院,北京 100083

清华大学信息国家研究中心,北京 100084

河钢材料技术研究院,河北石家庄 050023

高炉压差 预测模型 特征提取 长短期记忆网络算法 波动率分析 决策树特征重要性分析

2024

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2024.48(2)
  • 17