首页|基于改进YOLOv3模型的热轧板卷表面缺陷检测技术研究

基于改进YOLOv3模型的热轧板卷表面缺陷检测技术研究

扫码查看
热轧板是钢铁产品生产的重要原材料,其表面缺陷直接影响着最终钢铁产品的质量,因此热轧板表面缺陷的检测技术对于控制产品质量有着重要的意义.为更准确、高效实现热轧卷板表面质量判定,降低唐钢热轧产线的人工成本,进而提高生产效率,研究热轧卷板表面缺陷自动检测技术势在必行.本文在YOLOv3模型基础上进行了改进:引入改进注意力模块SE-PRE,提高模型对缺陷区域的关注程度;增加检测分支扩大感受野,提高模型对小目标缺陷检测的能力;引入dropout检测头,有效控制了训练过拟合现象.同时在模型训练上,优化了学习率设置、损失函数及最优模型的选择策略;在数据上,利用数据增强技术扩充了数据量.通过现场大量数据实验,结果表明,本文的模型在检测精度和效率上均取得了较好的结果,对降低现场人工成本,提高产品质量具有重要意义.
Research on hot-rolled coil surface defects detection technology based on improved YOLOv3 model
Hot-rolled coil is an important raw material for steel production,and its surface defects di-rectly affect the quality of the final steel products.Therefore,the detection technology of surface de-fects on hot-rolled coils is of significant importance for controlling product quality.In order to achieve more accurate and efficient determination of the surface quality of hot-rolled coils,reduce labor costs in Tangshan Iron and Steel's hot-rolling production line,and thus improve production efficiency,stud-ying automatic detection technology for surface defects on hot-rolled coils is imperative.This paper proposes improvements to the YOLOv3 model:the introduction of the SE-PRE improved attention module to increase the model's focus on defect areas;the addition of a detection branch to expand the receptive field,improving the model's ability to detect small target defects;and the introduction of a dropout detection head to effectively control overfitting during training.Additionally,in terms of model training,the learning rate setting,loss function,and selection strategy for the optimal model were opti-mized.Data augmentation techniques is also used to expand the data volume.Through a large number of on-site data experiments,the results show that the model in this paper has achieved good results in both detection accuracy and efficiency.This is significant for reducing on-site labor costs and impro-ving product quality.

hot-rolled coildefect detectiondata augmentationattention blocksmall target detec-tionoverfitting

麻越、李月林、张琳、雷大伟、徐昊天

展开 >

冶金自动化研究设计院有限公司,北京 100071

冶金智能制造系统全国重点实验室,北京 100071

河钢乐亭钢铁有限公司,河北唐山 063600

热轧卷板 缺陷检测 数据增强 注意力模块 小目标检测 过拟合

2024

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2024.48(3)
  • 26