首页|基于随机配置网络-蜣螂优化算法的硅钢热轧过程弯辊力和窜辊量优化策略

基于随机配置网络-蜣螂优化算法的硅钢热轧过程弯辊力和窜辊量优化策略

扫码查看
热轧硅钢板形对冷轧板形和边降具有显著的遗传效应,减小热轧硅钢产品横向同板差可以有效提高冷轧产品的质量.在硅钢热连轧过程中,换规格或换牌号会出现弯辊力和窜辊量预设定值不准确的问题,使板形控制的效果降低.针对该问题,本文提出了一种基于随机配置网络(stochastic configuration network,SCN)的硅钢板凸度预测模型.为了提升模型对数据的拟合能力,增加了模型的隐藏层层数(deep stochastic configu-ration network,DeepSCN),并在 SCN 的建模过程中引入了流形正则化项(regularization stochastic configuration,RSC).以数据驱动模型的预测结果为导向,采用蜣螂优化(dung beetle optimizer,DBO)算法对弯辊力和窜辊量进行优化.根据优化结果可知,该方法可以使比例凸度的波动控制在较小范围内,并将精轧出口凸度偏差在±5μm以内的数据提高到92.2%.这不仅有效提高了硅钢的板形质量,也为硅钢板形控制提供了新的研究方向和技术手段.
Optimization strategy of bending force and rolling shift for hot rolling process of silicon steel based on stochastic configuration network-dung beetle optimization algorithm
Hot rolled silicon steel plate shape has significant genetic effect on the cold rolled plate shape and edge drop,and reducing the hot rolled silicon steel products transverse with the same plate difference can effectively improve the quality of cold rolled products.However,in the process of hot rolling of silicon steel,changing specifications or steel grades can lead to inaccurate pre-set values of bending force and rolling shift,which leads to a poor plate shape control effect.To address this prob-lem,this paper proposes a prediction model for silicon steel crown based on stochastic configuration network(SCN).To improve the model's capacity to fit the data,the number of hidden layers in the model was increased(DeepSCN),and incorporated the manifold regularization term in the SCN mod-eling process(RSC).Guided by the data-driven model's prediction results,the dung beetle optimiza-tion(DBO)algorithm was used to optimize the bending force and rolling shift.The results show that this method can control the fluctuation of the proportional crown within a small range,and the data of the finishing mill exit plate crown deviation within±5 μm can be improved to 92.2%.This not only effectively improves the quality of plate shape of silicon steel,but also provides a new research direc-tion and technical method for the control of plate shape in silicon steel.

silicon steel plate shapestochastic configuration network(SCN)manifold regulariza-tionoptimization of bending force and rolling shiftdung beetle optimization(DBO)

杜昊展、丁敬国、孙建红、曹国屿、赵健、李旭、张殿华

展开 >

东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳 110819

本钢板材股份有限公司热连轧厂,辽宁本溪 117000

鞍山钢铁集团有限公司冷轧硅钢厂,辽宁鞍山 114031

硅钢板形 随机配置网络(SCN) 流形正则化 弯窜优化 蜣螂优化算法(DBO)

国家自然科学基金区域创新发展联合基金项目

U21A20475

2024

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2024.48(4)