首页|基于自启发式算法的板坯连铸二次冷却配水制度优化

基于自启发式算法的板坯连铸二次冷却配水制度优化

扫码查看
以某钢厂10号板坯连铸机生产Q355B钢的过程为研究背景,系统地比较了粒子群优化(particle swarm optimization,PSO)、遗传算法(genetic algorithm,GA)、模拟退火(simulated annealing,SA)、教学学习优化(teach-ing-learning-based optimization,TLBO)和粒子群-遗传算法(particle swarm optimization-genetic algorithm,PSO-GA)等多种自启发式算法在连铸二次冷却配水制度优化中的应用效果.在研究中结合冶金准则制定了多个优化目标对连铸过程进行优化,使用传热数值模型模拟铸坯的凝固和冷却过程.并对不同算法的计算效率、稳定性和优化效果进行了对比发现,PSO算法虽然求解效率高且收敛速度快,但表现出较大的波动,稳定性不高;GA算法则显示出更高的稳定性,但收敛速度较慢;SA算法参数调整简单,计算速度最快,稳定性较好,但收敛速度慢,精确率低;TLBO算法由于其复杂的算法结构,计算时间最长,但稳定性高,收敛速度快,精确率高;PSO-GA混合算法求解效率高且稳定,保持快速收敛的同时,大幅度提高了全局搜索能力,优化的稳定性和准确性均得到了显著提升.在优化效果方面,所有算法均成功改善了铸坯的冷却均匀性和温度分布.这些结果不仅验证了自启发式算法在连铸技术优化中的应用潜力,也为连铸二次冷却工艺的进一步数字化研究和算法实际应用提供了理论参考.
Optimization of secondary cooling water distribution system for slab continuous casting based on self-heuristic algorithm
This study uses the Q355B steel production process of a steel plant's No.10 slab continu-ous caster as the research background and systematically compares the application effects of various heuristic algorithms such as particle swarm optimization(PSO),genetic algorithm(GA),simulated annealing(SA),teaching-learning-based optimization(TLBO),and particle swarm optimization-genetic algorithm(PSO-GA)in optimizing the secondary cooling water system of continuous casting.The research formulated multiple optimization targets based on metallurgical standards to optimize the continuous casting process and used a heat transfer numerical model to simulate the solidification and cooling of the slab.A comparison of different algorithms shows that while the PSO algorithm has high solving efficiency and fast convergence,it exhibits considerable fluctuation and low stability.The GA algorithm demonstrates higher stability but slower convergence.The SA algorithm,with simple param-eter adjustments,offers the fastest computing speed and good stability but slow convergence and low precision.The TLBO algorithm,despite its complex structure which results in the longest computation time,achieves high stability,rapid convergence,and high precision.The PSO-GA hybrid algorithm maintains rapid convergence while significantly enhancing global search capabilities,substantially im-proving optimization stability and accuracy.In terms of optimization effects,all algorithms successfully improved the uniformity of slab cooling and temperature distribution.These results not only confirm the potential application of heuristic algorithms in continuous casting technology optimization but also provide a theoretical reference for further digital research and practical application of algorithms in secondary cooling processes of continuous casting.

slab continuous castingsecondary coolingheuristic algorithmwater distribution system optimizationnumerical modeling

任梓祥、凌海涛、詹中华、张力、于科哉、徐李军

展开 >

安徽工业大学冶金工程学院,安徽马鞍山 243000

钢铁研究总院有限公司连铸技术国家工程研究中心,北京 100081

板坯连铸 二次冷却 自启发式算法 配水制度优化 数值模型

2024

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2024.48(6)
  • 1