首页|基于GA-XGBoost算法的高炉可解释铁水产量预测模型

基于GA-XGBoost算法的高炉可解释铁水产量预测模型

扫码查看
针对高炉出铁前铁水产量未知导致铁水包难以高效中转与调度的问题,使用遗传算法优化的极度梯度提升树(genetic algorithm optimized extreme gradient boosting,GA-XGBoost)算法构建并训练了铁水产量预测模型.经过测试与多模型对比,所提方法在多特征数据集的铁水产量预测问题中具有一定优势,在误差10 t的范围内取得89.64%的预测准确率.首先修正了实验数据集的缺失值和异常值,在归一化后获得结构化的数据用于模型训练;然后,采用灰色关联分析方法筛选了铁水产量的主要影响因素,并结合工艺原理去除冗余参数;最后确定15个特征变量用于构建模型的输入向量.同时,针对预测结果,采用沙普利值可加性解释(Shapley additive explanations,SHAP)原理量化了不同操作参数对铁水产量的贡献程度,为高炉的参数调控工作提供数据支持.本研究实现了基于炉次特征的铁水产量预测任务,不仅有利于更高效的高炉调控以促进铁水产量的提高,同时结合预测结果,工作人员可以提前部署铁水包的运输路线,减少铁水包的热量耗散,进一步实现高炉冶炼的降本增效.
GA-XGBoost-based interpretable model for predicting molten iron yield of blast furnace
To address the issue of unknown molten iron yield prior to tapping in blast furnaces,which leads to inefficiencies in transportation and scheduling of molten iron ladles,a prediction model about molten iron yield constructed and trained using the GA-XGBoost algorithm was proposed.After testing and comparing multiple models,the proposed method demonstrates a certain advantage in predicting molten iron yield from a multi-feature dataset,achieving an accuracy of 89.64%within a±10 t error range.Firstly,the missing and anomalous values in the experimental dataset is corrected.After nor-malization,the structured data is used for model training.The grey relational analysis method is then used to identify the key influencing factors of molten iron yield,and redundant parameters are re-moved based on process principles.In the end,15 feature variables are selected to form the input vector for model construction.Additionally,to quantify the impact of different operational parameters on molten iron yield,the SHAP calculation framework is employed,providing data support for regula-ting parameter in blast furnaces.This study achieves the prediction task of molten iron yield of blast furnace based on furnace characteristics,contributing to more efficient blast furnace regulation to im-prove production.Furthermore,by leveraging the prediction results,workers can pre-plan the trans-portation routes for the ladles,reducing heat dissipation and thus improving the cost-efficiency of blast furnace smelting.

blast furnace smeltingprediction of molten iron yieldGA-XGBoost algorithmgrey corre-lation analysisSHAP diagram

孟凯、刘小杰、伊凤永、段一凡、陈树军、刘二浩

展开 >

河钢集团有限公司承德分公司,河北承德 067000

华北理工大学冶金与能源学院,河北唐山 063210

高炉冶炼 铁水产量预测 GA-XGBoost算法 灰色关联分析 SHAP图

2024

冶金自动化
冶金自动化研究设计院

冶金自动化

影响因子:0.685
ISSN:1000-7059
年,卷(期):2024.48(6)