首页|基于多域属性表征解耦的水下图像无监督可控增强

基于多域属性表征解耦的水下图像无监督可控增强

扫码查看
水下图像无监督增强技术多面向特定失真因素,对于水下多类失真图像适应性略显不足;图像的内容属性(结构)会随风格属性(外观)迁移变化,导致增强效果不受控,影响后续环境感知处理的稳定性和准确性.针对这一问题,文中提出一种基于多域属性表征解耦(MARD)的水下图像无监督可控增强方法.首先设计多域统一的表征解耦循环一致对抗变换框架,提高了算法对多失真因素的适应性;其次构建双编码-条件解码网络结构;最后设计了MARD的系列损失,提高了质量、内容、风格等属性表征的独立表达性和可控性.实验结果表明,所提算法不仅可以消除水下图像的色差、模糊、噪声和低光照等多类失真,还可通过线性插值的方式量化图像风格码对水下图像进行可控增强.
Unsupervised Controllable Enhancement of Underwater Images Based on Multi-Domain Attribute Representation Disentanglement
The unsupervised enhancement technology for underwater images is mainly oriented towards specific distortion factors and exhibits limited adaptability towards various underwater distorted images.The content attribute(structure)of the image will migrate and change with the style attribute(appearance),resulting in an uncontrolled enhancement effect and affecting the stability and accuracy of subsequent environmental perception and processing.To address this issue,an unsupervised controllable enhancement method of underwater images based on multi-domain attribute representation disentanglement(MARD)was proposed in the paper.First,a framework of multi-domain unified representation disen-tanglement cycle-consistent adversarial translations was designed,thereby enhancing the algorithm's adaptability to multiple distortion factors.Subsequently,a dual-encoding and conditional decoding network structure was constructed.Finally,a series of losses for MARD was designed to enhance the independence and controllability of quality,content,style,and other attribute representations.Experimental results demonstrate that the proposed algorithm not only eliminates various distortions such as color aberration,blur,noise,and low illumination in underwater images but also quantify the image style codes by linear interpolation for controllable enhancement of underwater images.

underwater image enhancementmulti-domain attribute representation disentanglementunsuperviseddistortionfeature interpolation

周世健、朱鹏莅、刘厶源、陈瀚

展开 >

大连海事大学 轮机工程学院,辽宁 大连,116026

水下图像增强 多域属性表征解耦 无监督 失真 特征插值

国家自然科学基金项目资助

62301107

2024

水下无人系统学报
中国船舶重工集团公司第七〇五研究所

水下无人系统学报

CSTPCD
影响因子:0.251
ISSN:2096-3920
年,卷(期):2024.32(5)