首页|基于随机森林的水下声自导武器尺度目标识别特征寻优

基于随机森林的水下声自导武器尺度目标识别特征寻优

扫码查看
水下声自导武器在进行水下尺度目标识别时,通常需要从水下目标回波中提取不同维度特征,并将其进行组合形成互补的特征集合以提高识别率.然而,由于特征的应用场景不同,将所有特征全部引入会导致特征集维度较高,特征之间可能包含冗余信息,导致识别难度增加.文中针对水下声自导武器主动识别问题中特征集维度高、需要进行选择的问题,提出了一种基于随机森林的特征寻优算法.同时,针对水下声自导武器主动回波数据量少且种类不平衡的问题,在特征域采用合成少数类过采样技术.利用实航数据将文中方法选择的特征子集输入分类器进行测试,结果表明,该方法可获得较好的特征子集,能够有效提高识别率.
Feature Selection of Scale Target Recognition by Underwater Acoustic Homing Weapons Based on Random Forest
When underwater acoustic homing weapons identify underwater scale targets,it is necessary to extract different dimensional features from underwater target echoes and combine the features to form a complementary feature set to improve the recognition accuracy.However,due to the different application scenarios of different features,introducing all features leads to a high dimension of the feature set and may contain redundant information among each other,which will increase the difficulty of recognition.In the active recognition problem of underwater acoustic homing weapons,the feature set has a high dimension and needs to be selected.To solve these problems,a feature selection algorithm based on random forest(RF)was proposed in this paper.At the same time,to solve the problem of small amounts and unbalanced types of active echo data of underwater acoustic homing weapons,the synthetic minority oversampling technique was adopted in the feature domain.The feature subsets selected by the proposed method were put into the classifiers for testing by using real data.The results show that the proposed method can obtain better feature subsets and effectively improve the recognition accuracy.

underwater acoustic homing weaponsrandom forestrecognition of underwater scale targetfeature selection

邓剑晶、石磊、王晨宇、刘礼文、杨向锋、杨云川

展开 >

中国船舶集团有限公司 第七〇五研究所,陕西 西安,710077

水下信息与控制重点实验室,陕西 西安,710077

水下声自导武器 随机森林 水下尺度目标识别 特征寻优

2024

水下无人系统学报
中国船舶重工集团公司第七〇五研究所

水下无人系统学报

CSTPCD
影响因子:0.251
ISSN:2096-3920
年,卷(期):2024.32(5)