首页|基于BP神经网络的耗占比预测研究

基于BP神经网络的耗占比预测研究

扫码查看
目的 运用反向传播(Backward Propagation,BP)神经网络建立合适的耗占比预测模型,帮助医院管理部门评估各科室耗材使用是否合理.方法 选取安徽医科大学第一附属医院2021年1月至2023年5月的运营数据构建数据集,通过训练集训练网络模型,通过验证集及测试集评价模型性能.结果 建立BP神经网络模型并对耗占比进行预测,模型在验证集上的解释方差为0.998604,平均绝对误差为0.006219;在测试集上评价指标略有下降,解释方差为0.962396,平均绝对误差为0.027858,各评价指标仍优于其他模型.结论 基于BP神经网络的耗占比预测模型可实现科室、总收入、药占比、出入院人次等指标的非线性关系描述,可对耗占比进行准确预测,为医院对各科室耗材的考核评估提供了量化的数据支撑.
Research on Consumption Ratio Prediction Based on BP Neural Network
Objective To use the backward propagation(BP)neural network to establish an appropriate consumption ratio prediction model,to help the hospital management department evaluate whether the use of consumables in each department is reasonable.Methods The operating data of the First Affiliated Hospital of Anhui Medical University from January 2021 to May 2023 were selected to construct the dataset.The network model was trained through the training set and its performance was evaluated through the validation set and the test set.Results The BP neural network model was established to predict the consumption ratio.The explained variance was 0.998604 in the validation set,and the mean absolute error was 0.006219.The evaluation index decreased slightly in the test set,the explained variance was 0.962396,and the mean absolute error was 0.027858.All evaluation indexes were better than other models.Conclusion The consumption ratio prediction model based on BP neural network can realize the nonlinear relationship description of the department,total revenue,drug ratio,and hospital visits etc.,and the model output can accurately predict the consumption ratio,which provides quantitative data support for the assessment and evaluation of consumables in each department.

medical consumablesconsumption ratiobackward propagation neural networkregression model

陈瑶、于典、张晓斌

展开 >

安徽医科大学 生物医学工程学院,安徽 合肥 230032

安徽医科大学第一附属医院北区 医学工程部,安徽 合肥 230012

安徽医科大学第一附属医院 医学工程部,安徽 合肥 230032

医用耗材 耗占比 反向传播神经网络 回归模型

国家重点研发计划

2019YFC0117804

2024

中国医疗设备
中国整形美容协会

中国医疗设备

CSTPCD
影响因子:0.825
ISSN:1674-1633
年,卷(期):2024.39(2)
  • 24