首页|基于支持向量机的PSA制氧机气控阀故障诊断

基于支持向量机的PSA制氧机气控阀故障诊断

扫码查看
目的 提出一种故障诊断方法,以有效诊断变压吸附(Pressure Swing Adsorption,PSA)制氧机气控阀故障类别,防止因气控阀故障造成PSA制氧机无法工作.方法 运用时域和频域分析方法分析气控阀动力信号,选取表征典型故障的特征值,并运用选出的特征值对支持向量机(Support Vector Machine,SVM)训练,获得准确的SVM模型.使用该SVM模型对待测气控阀压力信号进行故障标签分类.结果 选取10个维修返厂气控阀进行无标签验证,每个气控阀采集200组数据,放入该SVM模型中进行故障诊断.实验结果与SVM模型预测结果完全相同,实验验证准确率为100%.结论 提出一种基于时域、频域特征与SVM模型相结合的制氧机气控阀故障诊断方法,通过此方法可高效地诊断气控阀的故障类别,实现准确更换或修复气控阀内元件,为后续气控阀故障诊断提供思路和方法.
PSA Oxygen Generator Air Control Valve Fault Diagnosis Based on Support Vector Machine
Objective To propose a fault diagnosis method,which can effectively diagnose the fault categories of pressure swing adsorption(PSA)oxygen generator air control valve,and prevent the PSA oxygen generator from not working due to the fault of the air control valve.Methods The time domain and frequency domain analysis methods were used to analyze the pressure signals of the air control valve,and the characteristic values representing typical faults were selected,and the selected characteristic values were trained on the support vector machine(SVM)to obtain an accurate SVM model.The SVM model was used to classify the pressure signals of the air control valve.Results Ten air control valves were selected for non-label verification,and 200 sets of data were collected for each air control valve and put into the SVM model for fault diagnosis.The experimental results were exactly the same as those predicted by SVM model,and the accuracy of experimental verification was 100%.Conclusion A fault diagnosis method for air control valve of oxygen generator is proposed based on the combination of time domain and frequency domain characteristics and SVM model.Through this method,the fault categories of air control valve can be effectively and efficiently diagnosed,and the components in air control valve can be accurately replaced or repaired,which provides ideas and methods for the subsequent fault diagnosis of air control valve.

fault diagnosissignal analysischaracteristic value selectionsupport vector machine

刘健民、黄鑫、贾申、秦昊、陈曦泽、王长龙

展开 >

华氧医疗科技(大连)有限公司,辽宁 沈阳 116000

中国人民解放军总医院 第二医学中心,北京 100853

沈阳工业大学 机械工程学院,辽宁 沈阳 110870

故障诊断 信号分析 特征值选取 支持向量机

2024

中国医疗设备
中国整形美容协会

中国医疗设备

CSTPCD
影响因子:0.825
ISSN:1674-1633
年,卷(期):2024.39(2)
  • 22