首页|融合深度学习和影像组学特征的胰腺囊性肿瘤分类模型研究

融合深度学习和影像组学特征的胰腺囊性肿瘤分类模型研究

扫码查看
目的:为提升胰腺囊性肿瘤分类的准确率和一致性,构建融合深度学习和影像组学特征的综合分类模型.方法:首先,利用影像组学技术提取胰腺囊性肿瘤图像的影像组学特征,采用ResNet50卷积神经网络提取胰腺囊性肿瘤图像的深度学习特征,并采用最小绝对收缩选择算子特征筛选方法对特征进行筛选,得到关键特征;其次,基于关键特征构建单一影像组学的特征模型、单一深度学习的特征模型、融合深度学习和影像组学特征的综合分类模型;最后,选用逻辑回归、随机森林、自适应提升以及支持向量机(support vector machine,SVM)4个分类器对上述3种特征模型进行对比测试,以验证3种模型对胰腺囊性肿瘤的分类效果.结果:融合深度学习和影像组学特征的综合分类模型在SVM分类器上表现最好,准确率为89.34%、召回率为92.13%、精确率为75.34%、AUC值为0.90,F1值为0.83,均优于单一影像组学特征模型和单一深度学习特征模型.结论:融合深度学习和影像组学特征的综合分类模型更能挖掘出各类特征之间是否存在互补关系,具有较好的胰腺囊性肿瘤分类性能,能够为进一步的精准诊断和治疗提供帮助.
Pancreatic cystic neoplasm classification model integrating deep learning and radiomics features
Objective To establish a comprehensive classification model integrating deep learning and radiomics features to enhance the accuracy and consistency for identifying pancreatic cystic neoplasms.Methods Firstly,the radiomics technique and ResNet50 convolutional neural network were used to extract the features of radiomics and deep learing for pancreatic cystic neoplasms,respectively,and the key features were obtained by screening the features with the least absolute shrinkage and selection operator;secondly,three classification models were constructed by integrating only key features,deep learning features or radiomics and deep learning features,respectively;finally,logistic regression,random forest,adaptive boosting and support vector machine(SVM)classifiers were used to compare the above feature models in order to verify their efficacies for categorizing pancreatic cystic neoplasms.Results The comprehensive model integrating deep learning and radiomics features performed the best on the SVM classifier,which gained advantages over the other two models with the accuracy,recall,precision,AUC value and F1 value being 89.34%,92.13%,75.34%,0.90 and 0.83,respectively.Conclusion The comprehensive classification model integrating deep learning and radiomics features behaves well in mining relationships between various types of features and classifying pancreatic cystic neoplasms,and facilitates further precise diagnosis and treatment.[Chinese Medical Equipment Journal,2025,46(1):7-12]

magnetic resonance imagingdeep learningradiomicspancreatic cystic neoplasmneoplasm classification

王蕾、丁明凤

展开 >

江苏省肿瘤医院放疗科,南京 210009

磁共振成像 深度学习 影像组学 胰腺囊性肿瘤 肿瘤分类

2025

医疗卫生装备
军事医学科学院卫生装备研究所

医疗卫生装备

影响因子:0.776
ISSN:1003-8868
年,卷(期):2025.46(1)