首页|小批量物料需求周预测的研究

小批量物料需求周预测的研究

扫码查看
在多品种小批量的物料生产中,企业一般事先无法知道物料的实际需求量,而准确的物料需求量预测对于提高企业生产效率具有重要的意义。首先建立了基于需求频数、需求数量、需求趋势和销售单价的物料重要性因子模型,从物料的重要性来筛选企业需要重点关注的物料;随后引入基于需求频数、需求趋势和销售单价的随机森林回归模型和前馈神经网络模型来预测物料的需求量,并通过均方差等指标来评估模型。实验验证表明,该预测模型能为企业小批量物料需求提供一个有参考意义的解决方案。
Research on Weekly Forecast of Small Batch Material Demand
In the production of multi variety and small batch materials,enterprises generally cannot know the actual demand of materials in advance,and accurate prediction of material demand is of great significance for improving the production efficiency of enterprises.Firstly,the paper establishes a material importance factor model based on demand frequency,demand quantity,demand trend and sales unit price to screen the materials that enterprises need to focus on from the importance of materials;Then the stochastic forest regression model and feedforward neural network model based on demand frequency,demand trend and unit price are introduced to predict the demand of materials,and the model is evaluated by means of indicators such as mean square error.The experimental results show that the prediction model can provide a reference solution for small batch material demand of enterprises.

small batch materialsrandom forestneural networkmodel

杜珍珍、周同

展开 >

铜陵职业技术学院基础部,安徽铜陵 244061

小批量物料 随机森林 神经网络 模型

安徽省省级质量工程教研一般项目铜陵职业技术学院院级科研自然重点项目安徽省高校科学研究重点项目安徽省省级质量工程教研一般项目

2022jyxm1666TZY23ZRZD032023AH0528872021jyxm1576

2024

杨凌职业技术学院学报
杨凌职业技术学院

杨凌职业技术学院学报

影响因子:0.325
ISSN:1671-9131
年,卷(期):2024.23(2)
  • 8