首页|成渝双城经济圈县域碳排放时空格局及影响因素分析

成渝双城经济圈县域碳排放时空格局及影响因素分析

扫码查看
基于近16年来(2002-2017年)成渝双城经济圈141个县域碳排放数据,利用空间自相关、脱钩模型和时空地理加权回归模型(GTWR)分析该区县域人均碳排放时空格局差异和影响因素.结果表明:(1)2003-2017年成渝地区双城经济圈县域碳排放总量和人均碳排放量年均增速为5.43%和4.68%.历经"大幅上涨—高位波动"的发展阶段.(2)县域人均碳排放具有空间正相关关系,高高聚集区位于成都市区县和重庆市主城区构成的"双核心"区域.(3)县域发展类型得到优化改善,低碳发展型县域占44.37%.(4)影响系数的大小排序为:技术进步>经济发展水平>城镇化率>产业结构>人口规模>财政投入,技术进步和经济发展水平是区域县域的首要影响因素,人口规模对川渝交界的区县正向影响较大,财政投入对大部门地区具有显著的负向作用.
SPATIO-TEMPORAL PATTERN AND INFLUENCING FACTORS OF COUNTY CARBON EMISSION IN CHENGDU-CHONGQING ECONOMIC CIRCLE
Based on carbon emission data from 141 counties in the Chengdu-Chongqing Economic Circle over the past 16 years(2002-2017),the spatial autocorrelation,decoupling model,and GTWR model were used to analyze the differences and influencing factors in the spatiotemporal pattern of per capita carbon emissions in the counties of the region.The results show that from 2003 to 2017,the average annual growth rates of total carbon e-missions and per capita carbon emissions in the Chengdu-Chongqing Economic Circle counties were 5.43%and 4.68%,respectively.Having gone through a development stage of"significant rise high volatility".(2)There is a spatial positive correlation between per capita carbon emissions in counties,and high concentration areas are located in the"dual core"area composed of districts and counties in Chengdu and the main urban area of Chongqing.(3)The development types of counties have been optimized and improved,with low-carbon de-velopment counties accounting for 44.37%.(4)The ranking of the impact coefficients is:technological pro-gress>economic development level>urbanization rate>industrial structure>population size>fiscal invest-ment.Technological progress and economic development level are the primary influencing factors of the city's re-gional counties.Population size has a significant positive impact on the counties at the border of Sichuan and Chongqing,while fiscal investment has a significant negative effect on most regions.

per capita CO2 emissionsChengdu-Chongqing Ecoromic CircleTapio modelGTWR model

刘姜、罗怀良、孟险、袁勇

展开 >

四川师范大学地理与资源科学学院,四川成都 610101

四川师范大学西南土地资源评价与监测教育部重点实验室,四川成都 610068

人均碳排放 成渝经济圈 脱钩模型 GTWR模型

国家社会科学基金

17BGL137

2024

云南地理环境研究
云南大学

云南地理环境研究

影响因子:0.337
ISSN:1001-7852
年,卷(期):2024.36(1)
  • 33