首页|基于频率Transformer-CNN耦合的烟雾分割模型研究

基于频率Transformer-CNN耦合的烟雾分割模型研究

扫码查看
本文深入开展了输电线路附近山火实时监测过程中图像的烟雾分割方法研究,有助于对图像中烟雾体积、扩散方向和源头等准确提取信息,这对制定应急预案具有重要意义.为此,提出了一种名为CFTNet的双分支分割模型.该模型将频率Transformer分支与CNN分支结合起来,优化了全局和局部特征的表示.此外,本文还设计了一个混合自注意力融合模块(HSAM),以高效地融合来自频率Transformer分支和CNN分支的信息.研究表明,该算法的性能优于其他主流分割方法.
Research on Smoke Segmentation Model Based on Frequency Transformer CNN Coupling
This article delves into the study of smoke segmentation methods in real-time monitoring of wildfires near transmission lines,which helps to accurately extract information such as smoke volume,diffusion direction,and source from images.This is of great significance for developing emergency plans.To this end,a dual branch segmentation model called CFT-Net was proposed in the study.This model combines the frequency Transformer branch with the CNN branch to optimize the representation of global and local features.In addition,this article also designs a hybrid self attention fusion module(HSAM)to efficiently fuse information from the frequency Transformer branch and the CNN branch.Research has shown that the performance of this algorithm is superior to other mainstream segmentation methods.

Smoke Semantic SegmentationDual-Branch EncoderTransformerConvolutional Neural NetworkFourier

龙云峰、周仿荣、文刚、杨泽文、王开正

展开 >

云南电网有限责任公司电力科学研究院,云南 昆明 650217

昆明理工大学电力工程学院,云南 昆明 650200

烟雾语义分割 双分支编码器 Transformer 卷积神经网络 傅里叶

云南省重大科技专项

202202AD080010

2024

云南电力技术
云南省电机工程学会 云南电力试验研究院(集团)有限公司电力研究院

云南电力技术

影响因子:0.244
ISSN:1006-7345
年,卷(期):2024.52(3)